References
- T.T.Y. Tan, D. Beydoun, R. Amal, Photocatalytic reduction
of Se(VI) in aqueous solutions in UV/TiO2 system: kinetic
modeling and reaction mechanism, J. Phys. Chem. B., 107 (2003)
4296–4303.
- U. Tinggi, Essentiality and toxicity of selenium and its status
in Australia: a review, Toxicol. Lett., 137 (2003) 103–110.
- S. Santos, G. Ungureanu, R. Boaventura, C. Botelho, Selenium
contaminated waters: an overview of analytical methods,
treatment options and recent advances in sorption methods,
Sci. Total Environ., 521–522 (2015) 246–260.
- C.M. Stivanin de Almeida, A.S. Ribeiro, T.D. Saint’Pierre,
N. Miekeley, Studies on the origin and transformation of
selenium and its chemical species along the process of petroleum
refining, Spectrochim. Acta, Part B, 64 (2009) 491–499.
- M.P. de Souza, I.J. Pickering, M. Walla, N. Terry, Selenium
assimilation and volatilization from selenocyanate-treated
Indian mustard and muskgrass, Plant Physiol., 128 (2002)
625–633.
- N. Miekeley, R.C. Pereira, E.A. Casartelli, A.C. Almeida,
M. de F.B. Carvalho, Inorganic speciation analysis of selenium
by ion chromatography-inductively coupled plasma-mass
spectrometry and its application to effluents from a petroleum
refinery, Spectrochim. Acta, Part B, 60 (2005) 633–641.
- G.B. Tonietto, J.M. Godoy, A.C. Oliveira, M.V. de Souza,
Simultaneous speciation of arsenic (As(III), MMA, DMA, and
As(V) and selenium (Se(IV), Se(VI), and SeCN–) in petroleum
refinery aqueous streams, Anal. Bioanal. Chem., 397 (2010)
1755–1761.
- D. Wallschlager, N.S. Bloom, Determination of selenite, selenate
and selenocyanate in waters by ion chromatography-hydride
generation-atomic fluorescence spectrometry (IC-HG-AFS),
J. Anal. At. Spectrom., 16 (2001) 1322–1328.
- N. Bleiman, Y.G. Mishael, Selenium removal from drinking
water by adsorption to chitosan-clay composites and oxides:
batch and columns tests, J. Hazard. Mater., 183 (2010) 590–595.
- Y.T. Chan, W.H. Kuan, T.Y. Chen, M.K. Wang, Adsorption
mechanism of selenate and selenite on the binary oxide
systems, Water Res., 43 (2009) 4412–4420.
- S. Das, M. Jim Hendry, J. Essilfie-Dughan, Adsorption of
selenate onto ferrihydrite, goethite, and lepidocrocite under
neutral pH conditions, Appl. Geochem., 28 (2013) 185–193.
- B.A. Labaran, M.S. Vohra, Competitive adsorption of selenite
[Se(IV)], selenate [Se(VI)] and selenocyanate [SeCN–] species
onto TiO2: experimental findings and surface complexation
modelling, Desal. Water Treat., 124 (2018) 267–278.
- K.H. Goh, T.T. Lim, Geochemistry of inorganic arsenic and
selenium in a tropical soil: effect of reaction time, pH, and
competitive anions on arsenic and selenium adsorption,
Chemosphere, 55 (2004) 849–859.
- B.A. Labaran, M.S. Vohra, Photocatalytic removal of selenite
and selenate species: effect of EDTA and other process
variables, Environ. Technol., 35 (2014) 1091–1100.
- M.S. Vohra, M.S. Al-Suwaiyan, M.H. Essa, M.M.I. Chowdhury,
M.M. Rahman, B.A. Labaran, Application of solar photocatalysis
and solar photo-Fenton processes for the removal of some
critical charged pollutants: mineralization trends and formation
of reaction intermediates, Arabian J. Sci. Eng., 41 (2016)
3877–3887.
- B.A. Labaran, M.S. Vohra, Solar photocatalytic removal of
selenite, selenate, and selenocyanate species, Clean Soil Air
Water, 45 (2017), doi: 10.1002/clen.201600268.
- M.S. Vohra, B.A. Labaran, Photocatalytic treatment of mixed
selenocyanate and phenol streams: process modeling, optimization,
and kinetics, Environ. Prog. Sustainable Energy,
39 (2020) 1–11.
- M.S. Vohra, Selenocyanate (SeCN–) contaminated wastewater
treatment using TiO2 photocatalysis: SeCN– complex
destruction, intermediates formation, and removal of selenium
species, Fresenius Environ. Bull., 24 (2015) 1108–1118.
- T.S. Kazeem, B.A. Labaran, H. Ahmed, T. Mohammed,
M.H. Essa, M.S. Al-Suwaiyan, M.S. Vohra, Treatment of
aqueous selenocyanate anions using electrocoagulation, Int.
J. Electrochem. Sci., 14 (2019) 10538–10564.
- J. Das, D. Das, G.P. Dash, K.M. Parida, Studies on Mg/Fe
hydrotalcite-like-compound (HTlc): I. Removal of inorganic
selenite (SeO32–) from aqueous medium, J. Colloid Interface Sci.,
251 (2002) 26–32.
- X. Meng, S. Bang, G.P. Korfiatis, Removal of selenocyanate from
water using elemental iron, Water Res., 36 (2002) 3867–3873.
- S.D. Overman, Process for Removing Selenium from Refinery
Process Water and Waste Water Streams, U.S. Patent 5,993,667
(WO-1999020569-A1), 1999.
- D. Peak, D.L. Sparks, Mechanisms of selenate adsorption on
iron oxides and hydroxides, Environ. Sci. Technol., 36 (2002)
1460–1466.
- M.MV. Snyder, W. Um, Adsorption mechanisms and transport
behavior between selenate and selenite on different sorbents,
Int. J. Waste Resour., 4 (2014), doi: 10.4172/2252–5211.1000144.
- K. Atmatzidis, F. Alimohammadi, D.R. Strongin, R. Tehrani,
Biomimetic system for the application of nanomaterials in fluid
purification: removal of arsenic with ferrihydrite, ACS Omega,
5 (2020) 5873–5880.
- A.C. Dias, M.P.F. Fontes, C. Reis, C.R. Bellato, S. Fendorf,
Simplex-centroid mixture design applied to arsenic(V) removal
from waters using synthetic minerals, J. Environ. Manage.,
238 (2019) 92–101.
- S. Kim, W.C. Lee, H.G. Cho, B. Lee, P. Lee, S.H. Choi, Equilibria,
kinetics, and spectroscopic analyses on the uptake of aqueous
arsenite by two-line ferrihydrite, Environ. Technol., 35 (2014)
251–261.
- A.A. Kumar, A. Som, P. Longo, C. Sudhakar, R.G. Bhuin,
S.S. Gupta, Anshup, M.U. Sankar, A. Chaudhary, R. Kumar,
T. Pradeep, Confined metastable 2-Line ferrihydrite for
affordable point-of-use arsenic-free drinking water, Adv.
Mater., 29 (2017), doi: 10.1002/adma.201604260.
- W.C. Lee, S. Kim, J. Ranville, S. Yun, S.H. Choi, Sequestration
of arsenate from aqueous solution using 2-line ferrihydrite :
equilibria, kinetics, and X-ray absorption spectroscopic analysis,
Environ. Earth Sci., 71 (2014) 3307–3318.
- X. Jiang, C. Peng, D. Fu, Z. Chen, L. Shen, Q. Li, T. Ouyang,
Y. Wang, Removal of arsenate by ferrihydrite via surface
complexation and surface precipitation, Appl. Surf. Sci.,
353 (2015) 1087–1094.
- W. Xiu, H. Guo, X. Zhou, R.B. Wanty, M. Kersten, Applied
geochemistry change of arsenite adsorption mechanism during
aging of 2-line ferrihydrite in the absence of oxygen, Appl.
Geochem., 88 (2018) 149–157.
- F. Frau, D. Addari, D. Atzei, R. Biddau, R. Cidu, A. Rossi,
Influence of major anions on As(V) adsorption by synthetic
2-line ferrihydrite. Kinetic investigation and XPS study of
the competitive effect of bicarbonate, Water Air Soil Pollut.,
205 (2010) 25–41.
- C. Wang, Y. Cui, J. Zhang, M. Gomez, S. Wang, Y. Jia,
Chemosphere occurrence state of co-existing arsenate and
nickel ions at the ferrihydrite-water interface: mechanisms of
surface complexation and surface precipitation via ATR-IR
spectroscopy, Chemosphere, 206 (2018) 33–42.
- A. Dzieniszewska, J. Kyziol-Komosinska, M. Pająk, Adsorption
and bonding strength of chromium species by ferrihydrite
from acidic aqueous solutions, Peer J., 9324 (2020), doi: 10.7717/
peerj.9324.
- L. Zhu, F. Fu, B. Tang, Three-dimensional transfer of Cr(VI)
co-precipitated with ferrihydrite containing silicate and its
redistribution and retention during aging, Sci. Total Environ.,
696 (2019), doi: 10.1016/j.scitotenv.2019.133966.
- M. Villacís-García, M. Ugalde-Arzate, K. Vaca-Escobar,
M. Villalobos, R. Zanella, N. Martínez-Villegas, Laboratory
synthesis of goethite and ferrihydrite of controlled particle
sizes, Bol. Soc. Geol. Mex., 67 (2015) 433–446.
- N. Finck, M. Bouby, K. Dardenne, Fate of Lu(III) sorbed on
2-line ferrihydrite at pH 5.7 and aged for 12 years at room
temperature. I: insights from ICP-OES, XRD, ESEM, AsFlFFF/
ICP-MS, and EXAFS spectroscopy, Environ. Sci. Pollut. Res.,
26 (2019) 5238–5250.
- T. Yokosawa, E. Prestat, R. Polly, M. Bouby, K. Dardenne,
N. Finck, S.J. Haigh, M.A. Denecke, H. Geckeis, Fate of Lu(III)
sorbed on 2-line ferrihydrite at pH 5. 7 and aged for 12 years
at room temperature. II: insights from STEM-EDXS and
DFT calculations, Environ. Sci. Pollut. Res., 26 (2019) 5282–5293.
- N. Abdus-Salam, F.A. M’civer, Synthesis, characterisation and
application of 2-line and 6-line ferrihydrite to Pb(II) removal
from aqueous solution, J. Appl. Sci. Environ. Manage., 16 (2012)
327–336.
- K. Rout, M. Mohapatra, S. Anand, 2-Line ferrihydrite: synthesis,
characterization and its adsorption behaviour for removal
of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions,
Dalton Trans., 41 (2012) 3302–3312.
- B. Zhu, Y. Jia, Z. Jin, B. Sun, T. Luo, L. Kong, J. Liu, A facile
precipitation synthesis of mesoporous 2-line ferrihydrite
with good fluoride removal, RSC Adv., 5 (2015) 84389–84397.
- L. Brinza, H.P. Vu, M. Neamtu, L.G. Benning, Experimental
and simulation results of the adsorption of Mo and V onto
ferrihydrite, Sci. Rep., 9 (2019) 1–12.
- L. Zhao, J. Basly, M. Baudu, Macroporous alginate/ferrihydrite
hybrid beads used to remove anionic dye in batch and fixedbed
reactors, J. Taiwan Inst. Chem. Eng., 74 (2017) 129–135.
- T. Mathew, K. Suzuki, Y. Nagai, T. Nonaka, Y. Ikuta,
N. Takahashi, N. Suzuki, H. Shinjoh, Mesoporous 2-line
ferrihydrite by a solution-phase cooperative assembly process
for removal of organic contaminants in air, Chem. Eur. J.,
17 (2011) 1092–1095.
- D.B. Hausner, N. Bhandari, A.M. Pierre-Louis, J.D. Kubicki,
D.R. Strongin, Ferrihydrite reactivity toward carbon dioxide,
J. Colloid Interface Sci., 337 (2009) 492–500.
- T. Mathew, K. Suzuki, Y. Ikuta, Y. Nagai, N. Takahashi,
H. Shinjoh, Mesoporous ferrihydrite-based iron oxide nano-particles as highly promising materials for ozone removal,
Angew. Chem. Int. Ed., 123 (2011) 7519–7522.
- F.E. Rhoton, J.M. Bigham, Phosphate adsorption by ferrihydriteamended
soils, J. Environ. Qual., 34 (2005) 890–896.
- H.P. Vu, J.W. Moreau, Thiocyanate adsorption on ferrihydrite
and its fate during ferrihydrite transformation to hematite
and goethite, Chemosphere, 119 (2015) 987–993.
- K. Mitchell, R.M. Couture, T.M. Johnson, P.R.D. Mason,
P. Van Cappellen, Selenium sorption and isotope fractionation:
iron(III) oxides versus iron(II) sulfides, Chem. Geol., 342 (2013)
21–28.
- S. Wang, L. Lei, D. Zhang, G. Zhang, R. Cao, X. Wang, J. Lin,
Y. Jia, Stabilization and transformation of selenium during the
Fe(II)-induced transformation of Se(IV)-adsorbed ferrihydrite
under anaerobic conditions, J. Hazard. Mater., 384 (2020),
doi: 10.1016/j.jhazmat.2019.121365.
- D. Baş, İ.H. Boyacı, Modeling and optimization I: usability of
response surface methodology, J. Food Eng., 78 (2007) 836–845.
- T. Mohammed, T.S. Kazeem, M.H. Essa, B.A. Labaran,
M.S. Vohra, Comparative study on electrochemical treatment of
arsenite: effects of process parameters, sludge characterization
and kinetics, Arabian J. Sci. Eng., 45 (2020) 3799–3815.
- B.A. Labaran, M.S. Vohra, Application of activated carbon
produced from phosphoric acid-based chemical activation
of oil fly ash for the removal of some charged aqueous phase
dyes: role of surface charge, adsorption kinetics, and modeling,
Desal. Water Treat., 57 (2016) 16034–16052.
- C. Rani, S.D. Tiwari, Phase transitions in two-line ferrihydrite
nanoparticles, Appl. Phys. A, 123 (2017) 1–4.
- C.L. Snow, K.I. Lilova, A.V. Radha, Q. Shi, S. Smith,
A. Navrotsky, J. Boerio-Goates, B.F. Woodfield, Heat capacity
and thermodynamics of a synthetic two-line ferrihydrite,
J. Chem. Thermodyn., 58 (2013) 307–314.
- R. Brayner, T. Coradin, P. Beaunier, J. Grenèche, C. Djediat,
C. Yéprémian, A. Couté, F. Fiévet, Intracellular biosynthesis
of superparamagnetic 2-lines ferri-hydrite nanoparticles using
Euglena gracilis microalgae, Colloids Surf., B, 93 (2012) 20–23.
- S. Jeong, K. Yang, E.H. Jho, K. Nam, Importance of chemical
binding type between As and iron-oxide on bioaccessibility
in soil: test with synthesized two line ferrihydrite, J. Hazard.
Mater., 330 (2017) 157–164.
- Y. Jia, B. Zhu, K. Zhang, Z. Jin, B. Sun, T. Luo, X. Yu, L. Kong,
J. Liu, Porous 2-line ferrihydrite/bayerite composites (LFBC):
fluoride removal performance and mechanism, Chem. Eng. J.,
268 (2015) 325–336.
- Y. Huang, S. Zhang, C. Liu, H. Lu, S. Ni, X. Cheng, Z. Long,
R. Wang, Transformations of 2-line ferrihydrite and its effect
on cadmium adsorption, Environ. Sci. Pollut. Res., 25 (2018)
18059–18070.
- M.R. Hoffmann, S.T. Martin, W.C. Choi, D.W, Bahnemann,
Environmental applications of semiconductor photocatalysis,
Chem. Rev., 95 (1995) 69–96.
- F. Juillot, C. Marechal, M. Ponthieu, S. Cacaly, G. Morin,
M. Benedetti, J.L. Hazemann, O. Proux, F. Guyot, Zn isotopic
fractionation caused by sorption on goethite and 2-Lines
ferrihydrite, Geochim. Cosmochim. Acta, 72 (2008) 4886–4900.
- A.A. Mamun, M. Morita, M. Matsuoka, C. Tokoro, Sorption
mechanisms of chromate with coprecipitated ferrihydrite in
aqueous solution, J. Hazard. Mater., 334 (2017) 142–149.