References

  1. T.T.Y. Tan, D. Beydoun, R. Amal, Photocatalytic reduction of Se(VI) in aqueous solutions in UV/TiO2 system: kinetic modeling and reaction mechanism, J. Phys. Chem. B., 107 (2003) 4296–4303.
  2. U. Tinggi, Essentiality and toxicity of selenium and its status in Australia: a review, Toxicol. Lett., 137 (2003) 103–110.
  3. S. Santos, G. Ungureanu, R. Boaventura, C. Botelho, Selenium contaminated waters: an overview of analytical methods, treatment options and recent advances in sorption methods, Sci. Total Environ., 521–522 (2015) 246–260.
  4. C.M. Stivanin de Almeida, A.S. Ribeiro, T.D. Saint’Pierre, N. Miekeley, Studies on the origin and transformation of selenium and its chemical species along the process of petroleum refining, Spectrochim. Acta, Part B, 64 (2009) 491–499.
  5. M.P. de Souza, I.J. Pickering, M. Walla, N. Terry, Selenium assimilation and volatilization from selenocyanate-treated Indian mustard and muskgrass, Plant Physiol., 128 (2002) 625–633.
  6. N. Miekeley, R.C. Pereira, E.A. Casartelli, A.C. Almeida, M. de F.B. Carvalho, Inorganic speciation analysis of selenium by ion chromatography-inductively coupled plasma-mass spectrometry and its application to effluents from a petroleum refinery, Spectrochim. Acta, Part B, 60 (2005) 633–641.
  7. G.B. Tonietto, J.M. Godoy, A.C. Oliveira, M.V. de Souza, Simultaneous speciation of arsenic (As(III), MMA, DMA, and As(V) and selenium (Se(IV), Se(VI), and SeCN) in petroleum refinery aqueous streams, Anal. Bioanal. Chem., 397 (2010) 1755–1761.
  8. D. Wallschlager, N.S. Bloom, Determination of selenite, selenate and selenocyanate in waters by ion chromatography-hydride generation-atomic fluorescence spectrometry (IC-HG-AFS), J. Anal. At. Spectrom., 16 (2001) 1322–1328.
  9. N. Bleiman, Y.G. Mishael, Selenium removal from drinking water by adsorption to chitosan-clay composites and oxides: batch and columns tests, J. Hazard. Mater., 183 (2010) 590–595.
  10. Y.T. Chan, W.H. Kuan, T.Y. Chen, M.K. Wang, Adsorption mechanism of selenate and selenite on the binary oxide systems, Water Res., 43 (2009) 4412–4420.
  11. S. Das, M. Jim Hendry, J. Essilfie-Dughan, Adsorption of selenate onto ferrihydrite, goethite, and lepidocrocite under neutral pH conditions, Appl. Geochem., 28 (2013) 185–193.
  12. B.A. Labaran, M.S. Vohra, Competitive adsorption of selenite [Se(IV)], selenate [Se(VI)] and selenocyanate [SeCN] species onto TiO2: experimental findings and surface complexation modelling, Desal. Water Treat., 124 (2018) 267–278.
  13. K.H. Goh, T.T. Lim, Geochemistry of inorganic arsenic and selenium in a tropical soil: effect of reaction time, pH, and competitive anions on arsenic and selenium adsorption, Chemosphere, 55 (2004) 849–859.
  14. B.A. Labaran, M.S. Vohra, Photocatalytic removal of selenite and selenate species: effect of EDTA and other process variables, Environ. Technol., 35 (2014) 1091–1100.
  15. M.S. Vohra, M.S. Al-Suwaiyan, M.H. Essa, M.M.I. Chowdhury, M.M. Rahman, B.A. Labaran, Application of solar photocatalysis and solar photo-Fenton processes for the removal of some critical charged pollutants: mineralization trends and formation of reaction intermediates, Arabian J. Sci. Eng., 41 (2016) 3877–3887.
  16. B.A. Labaran, M.S. Vohra, Solar photocatalytic removal of selenite, selenate, and selenocyanate species, Clean Soil Air Water, 45 (2017), doi: 10.1002/clen.201600268.
  17. M.S. Vohra, B.A. Labaran, Photocatalytic treatment of mixed selenocyanate and phenol streams: process modeling, optimization, and kinetics, Environ. Prog. Sustainable Energy, 39 (2020) 1–11.
  18. M.S. Vohra, Selenocyanate (SeCN) contaminated wastewater treatment using TiO2 photocatalysis: SeCN complex destruction, intermediates formation, and removal of selenium species, Fresenius Environ. Bull., 24 (2015) 1108–1118.
  19. T.S. Kazeem, B.A. Labaran, H. Ahmed, T. Mohammed, M.H. Essa, M.S. Al-Suwaiyan, M.S. Vohra, Treatment of aqueous selenocyanate anions using electrocoagulation, Int. J. Electrochem. Sci., 14 (2019) 10538–10564.
  20. J. Das, D. Das, G.P. Dash, K.M. Parida, Studies on Mg/Fe hydrotalcite-like-compound (HTlc): I. Removal of inorganic selenite (SeO32–) from aqueous medium, J. Colloid Interface Sci., 251 (2002) 26–32.
  21. X. Meng, S. Bang, G.P. Korfiatis, Removal of selenocyanate from water using elemental iron, Water Res., 36 (2002) 3867–3873.
  22. S.D. Overman, Process for Removing Selenium from Refinery Process Water and Waste Water Streams, U.S. Patent 5,993,667 (WO-1999020569-A1), 1999.
  23. D. Peak, D.L. Sparks, Mechanisms of selenate adsorption on iron oxides and hydroxides, Environ. Sci. Technol., 36 (2002) 1460–1466.
  24. M.MV. Snyder, W. Um, Adsorption mechanisms and transport behavior between selenate and selenite on different sorbents, Int. J. Waste Resour., 4 (2014), doi: 10.4172/2252–5211.1000144.
  25. K. Atmatzidis, F. Alimohammadi, D.R. Strongin, R. Tehrani, Biomimetic system for the application of nanomaterials in fluid purification: removal of arsenic with ferrihydrite, ACS Omega, 5 (2020) 5873–5880.
  26. A.C. Dias, M.P.F. Fontes, C. Reis, C.R. Bellato, S. Fendorf, Simplex-centroid mixture design applied to arsenic(V) removal from waters using synthetic minerals, J. Environ. Manage., 238 (2019) 92–101.
  27. S. Kim, W.C. Lee, H.G. Cho, B. Lee, P. Lee, S.H. Choi, Equilibria, kinetics, and spectroscopic analyses on the uptake of aqueous arsenite by two-line ferrihydrite, Environ. Technol., 35 (2014) 251–261.
  28. A.A. Kumar, A. Som, P. Longo, C. Sudhakar, R.G. Bhuin, S.S. Gupta, Anshup, M.U. Sankar, A. Chaudhary, R. Kumar, T. Pradeep, Confined metastable 2-Line ferrihydrite for affordable point-of-use arsenic-free drinking water, Adv. Mater., 29 (2017), doi: 10.1002/adma.201604260.
  29. W.C. Lee, S. Kim, J. Ranville, S. Yun, S.H. Choi, Sequestration of arsenate from aqueous solution using 2-line ferrihydrite : equilibria, kinetics, and X-ray absorption spectroscopic analysis, Environ. Earth Sci., 71 (2014) 3307–3318.
  30. X. Jiang, C. Peng, D. Fu, Z. Chen, L. Shen, Q. Li, T. Ouyang, Y. Wang, Removal of arsenate by ferrihydrite via surface complexation and surface precipitation, Appl. Surf. Sci., 353 (2015) 1087–1094.
  31. W. Xiu, H. Guo, X. Zhou, R.B. Wanty, M. Kersten, Applied geochemistry change of arsenite adsorption mechanism during aging of 2-line ferrihydrite in the absence of oxygen, Appl. Geochem., 88 (2018) 149–157.
  32. F. Frau, D. Addari, D. Atzei, R. Biddau, R. Cidu, A. Rossi, Influence of major anions on As(V) adsorption by synthetic 2-line ferrihydrite. Kinetic investigation and XPS study of the competitive effect of bicarbonate, Water Air Soil Pollut., 205 (2010) 25–41.
  33. C. Wang, Y. Cui, J. Zhang, M. Gomez, S. Wang, Y. Jia, Chemosphere occurrence state of co-existing arsenate and nickel ions at the ferrihydrite-water interface: mechanisms of surface complexation and surface precipitation via ATR-IR spectroscopy, Chemosphere, 206 (2018) 33–42.
  34. A. Dzieniszewska, J. Kyziol-Komosinska, M. Pająk, Adsorption and bonding strength of chromium species by ferrihydrite from acidic aqueous solutions, Peer J., 9324 (2020), doi: 10.7717/ peerj.9324.
  35. L. Zhu, F. Fu, B. Tang, Three-dimensional transfer of Cr(VI) co-precipitated with ferrihydrite containing silicate and its redistribution and retention during aging, Sci. Total Environ., 696 (2019), doi: 10.1016/j.scitotenv.2019.133966.
  36. M. Villacís-García, M. Ugalde-Arzate, K. Vaca-Escobar, M. Villalobos, R. Zanella, N. Martínez-Villegas, Laboratory synthesis of goethite and ferrihydrite of controlled particle sizes, Bol. Soc. Geol. Mex., 67 (2015) 433–446.
  37. N. Finck, M. Bouby, K. Dardenne, Fate of Lu(III) sorbed on 2-line ferrihydrite at pH 5.7 and aged for 12 years at room temperature. I: insights from ICP-OES, XRD, ESEM, AsFlFFF/ ICP-MS, and EXAFS spectroscopy, Environ. Sci. Pollut. Res., 26 (2019) 5238–5250.
  38. T. Yokosawa, E. Prestat, R. Polly, M. Bouby, K. Dardenne, N. Finck, S.J. Haigh, M.A. Denecke, H. Geckeis, Fate of Lu(III) sorbed on 2-line ferrihydrite at pH 5. 7 and aged for 12 years at room temperature. II: insights from STEM-EDXS and DFT calculations, Environ. Sci. Pollut. Res., 26 (2019) 5282–5293.
  39. N. Abdus-Salam, F.A. M’civer, Synthesis, characterisation and application of 2-line and 6-line ferrihydrite to Pb(II) removal from aqueous solution, J. Appl. Sci. Environ. Manage., 16 (2012) 327–336.
  40. K. Rout, M. Mohapatra, S. Anand, 2-Line ferrihydrite: synthesis, characterization and its adsorption behaviour for removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions, Dalton Trans., 41 (2012) 3302–3312.
  41. B. Zhu, Y. Jia, Z. Jin, B. Sun, T. Luo, L. Kong, J. Liu, A facile precipitation synthesis of mesoporous 2-line ferrihydrite with good fluoride removal, RSC Adv., 5 (2015) 84389–84397.
  42. L. Brinza, H.P. Vu, M. Neamtu, L.G. Benning, Experimental and simulation results of the adsorption of Mo and V onto ferrihydrite, Sci. Rep., 9 (2019) 1–12.
  43. L. Zhao, J. Basly, M. Baudu, Macroporous alginate/ferrihydrite hybrid beads used to remove anionic dye in batch and fixedbed reactors, J. Taiwan Inst. Chem. Eng., 74 (2017) 129–135.
  44. T. Mathew, K. Suzuki, Y. Nagai, T. Nonaka, Y. Ikuta, N. Takahashi, N. Suzuki, H. Shinjoh, Mesoporous 2-line ferrihydrite by a solution-phase cooperative assembly process for removal of organic contaminants in air, Chem. Eur. J., 17 (2011) 1092–1095.
  45. D.B. Hausner, N. Bhandari, A.M. Pierre-Louis, J.D. Kubicki, D.R. Strongin, Ferrihydrite reactivity toward carbon dioxide, J. Colloid Interface Sci., 337 (2009) 492–500.
  46. T. Mathew, K. Suzuki, Y. Ikuta, Y. Nagai, N. Takahashi, H. Shinjoh, Mesoporous ferrihydrite-based iron oxide nano-particles as highly promising materials for ozone removal, Angew. Chem. Int. Ed., 123 (2011) 7519–7522.
  47. F.E. Rhoton, J.M. Bigham, Phosphate adsorption by ferrihydriteamended soils, J. Environ. Qual., 34 (2005) 890–896.
  48. H.P. Vu, J.W. Moreau, Thiocyanate adsorption on ferrihydrite and its fate during ferrihydrite transformation to hematite and goethite, Chemosphere, 119 (2015) 987–993.
  49. K. Mitchell, R.M. Couture, T.M. Johnson, P.R.D. Mason, P. Van Cappellen, Selenium sorption and isotope fractionation: iron(III) oxides versus iron(II) sulfides, Chem. Geol., 342 (2013) 21–28.
  50. S. Wang, L. Lei, D. Zhang, G. Zhang, R. Cao, X. Wang, J. Lin, Y. Jia, Stabilization and transformation of selenium during the Fe(II)-induced transformation of Se(IV)-adsorbed ferrihydrite under anaerobic conditions, J. Hazard. Mater., 384 (2020), doi: 10.1016/j.jhazmat.2019.121365.
  51. D. Baş, İ.H. Boyacı, Modeling and optimization I: usability of response surface methodology, J. Food Eng., 78 (2007) 836–845.
  52. T. Mohammed, T.S. Kazeem, M.H. Essa, B.A. Labaran, M.S. Vohra, Comparative study on electrochemical treatment of arsenite: effects of process parameters, sludge characterization and kinetics, Arabian J. Sci. Eng., 45 (2020) 3799–3815.
  53. B.A. Labaran, M.S. Vohra, Application of activated carbon produced from phosphoric acid-based chemical activation of oil fly ash for the removal of some charged aqueous phase dyes: role of surface charge, adsorption kinetics, and modeling, Desal. Water Treat., 57 (2016) 16034–16052.
  54. C. Rani, S.D. Tiwari, Phase transitions in two-line ferrihydrite nanoparticles, Appl. Phys. A, 123 (2017) 1–4.
  55. C.L. Snow, K.I. Lilova, A.V. Radha, Q. Shi, S. Smith, A. Navrotsky, J. Boerio-Goates, B.F. Woodfield, Heat capacity and thermodynamics of a synthetic two-line ferrihydrite, J. Chem. Thermodyn., 58 (2013) 307–314.
  56. R. Brayner, T. Coradin, P. Beaunier, J. Grenèche, C. Djediat, C. Yéprémian, A. Couté, F. Fiévet, Intracellular biosynthesis of superparamagnetic 2-lines ferri-hydrite nanoparticles using Euglena gracilis microalgae, Colloids Surf., B, 93 (2012) 20–23.
  57. S. Jeong, K. Yang, E.H. Jho, K. Nam, Importance of chemical binding type between As and iron-oxide on bioaccessibility in soil: test with synthesized two line ferrihydrite, J. Hazard. Mater., 330 (2017) 157–164.
  58. Y. Jia, B. Zhu, K. Zhang, Z. Jin, B. Sun, T. Luo, X. Yu, L. Kong, J. Liu, Porous 2-line ferrihydrite/bayerite composites (LFBC): fluoride removal performance and mechanism, Chem. Eng. J., 268 (2015) 325–336.
  59. Y. Huang, S. Zhang, C. Liu, H. Lu, S. Ni, X. Cheng, Z. Long, R. Wang, Transformations of 2-line ferrihydrite and its effect on cadmium adsorption, Environ. Sci. Pollut. Res., 25 (2018) 18059–18070.
  60. M.R. Hoffmann, S.T. Martin, W.C. Choi, D.W, Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69–96.
  61. F. Juillot, C. Marechal, M. Ponthieu, S. Cacaly, G. Morin, M. Benedetti, J.L. Hazemann, O. Proux, F. Guyot, Zn isotopic fractionation caused by sorption on goethite and 2-Lines ferrihydrite, Geochim. Cosmochim. Acta, 72 (2008) 4886–4900.
  62. A.A. Mamun, M. Morita, M. Matsuoka, C. Tokoro, Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution, J. Hazard. Mater., 334 (2017) 142–149.