References

  1. WHO, Guidelines for Drinking-Water Quality, Geneva, 2008.
  2. D. Mohan, C.U. Pittman Jr., Arsenic removal from water/ wastewater using adsorbents—a critical review, J. Hazard. Mater., 142 (2007) 1–53.
  3. A.V. Vitela-Rodriguez, J.R. Rangel-Mendez, Arsenic removal by modified activated carbons with iron hydro(oxide) nanoparticles, J. Environ. Manage., 114 (2013) 225–231.
  4. W.-G. Li, X.-J. Gong, K. Wang, X.-R. Zhang, W.-B. Fan, Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon, Bioresour. Technol., 165 (2014) 166–173.
  5. R. Sandoval, A.M. Cooper, K. Aymar, A. Jain, K. Hristovski, Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles, J. Hazard. Mater., 193 (2011) 296–303.
  6. M. Zhang, B. Gao, S. Varnoosfaderani, A. Hebard, Y. Yao, M. Inyang, Preparation and characterization of a novel magnetic biochar for arsenic removal, Bioresour. Technol., 130 (2013) 457–462.
  7. D.M. Sherman, S.R. Randall, Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy, GCA, 67 (2003) 4223–4230.
  8. K.Y. Foo, B.H. Hameed, Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating. Bioresour. Technol., 111 (2012) 425–432.
  9. K. Kadirvelu, M. Kavipriya, C. Karthika, M. Radhika, N. Vennilamani, S. Pattabhi, Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions, Bioresour. Technol., 87 (2003) 129–132.
  10. K. Lizama Allende, T.D. Fletcher, G. Sun, The effect of substrate media on the removal of arsenic, boron and iron from an acidic wastewater in planted column reactors, Chem. Eng. J., 179 (2012) 119–130.
  11. V.K. Gupta, V.K. Saini, N. Jain, Adsorption of As(III) from aqueous solutions by iron oxide-coated sand, J. Colloid Interface Sci., 288 (2005) 55–60.
  12. T.S. Singh, K.K. Pant, Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina, Sep. Purif. Technol., 36 (2004) 139–147.
  13. M.S. Onyango, Y. Kojima, Y. Kojima, H. Matsuda, H. Matsuda, A. Ochieng, A. Ochieng, Adsorption kinetics of arsenic removal from groundwater by iron-modified zeolite, J. Chem. Eng., 12 (2003) 1516–1522.
  14. S.-L. Lo, H.-T. Jeng, C.-H. Lai, Characteristics and adsorption properties of iron-coated sand, Water Sci. Technol., 35 (1997) 63–70.
  15. C.A.J. Appelo, M.J.J. Van Der Weiden, C. Tournassat, L. Charlet, Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic, Environ. Sci. Technol., 36 (2002) 3096–3103.
  16. S. Fendorf, M.J. Eick, P. Grossl, D.L. Sparks, Arsenate and chromate retention mechanisms on goethite. 1. Surface structure, Environ. Sci. Technol., 31 (1997) 315–320.
  17. K.P. Raven, A. Jain, R.H. Loeppert, Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes, Environ. Sci. Technol., 32 (1998) 344–349.
  18. W. Driehaus, M. Jekel, U. Hildebrandt, Granular ferric hydroxide—a new adsorbent for the removal of arsenic from natural water, J. Water Supply Res. Technol., 47 (1998) 30–35.
  19. Y. Xu, L. Axe, Synthesis and characterization of iron oxidecoated silica and its effect on metal adsorption, J. Colloid Interface Sci., 282 (2005) 11–19.
  20. J.A. Muñoz, A. Gonzalo, M. Valiente, Arsenic Adsorption by Fe(III)-loaded open-celled cellulose sponge. Thermodynamic and selectivity aspects, Environ. Sci. Technol., 36 (2002) 3405–3411.
  21. Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, Y. Tian, Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide, J. Am. Chem. Soc., 136 (2014) 4113–4116.
  22. Y. Ying, Y. Liu, X. Wang, Y. Mao, W. Cao, P. Hu, X. Peng, Twodimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water, ACS Appl. Mater. Interfaces, 7 (2015) 1795–1803.
  23. M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like twodimensional materials, Chem. Rev., 113 (2013) 3766–3798.
  24. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, J. Sci., 306 (2004) 666–669.
  25. A.K. Fard, G. Mckay, R. Chamoun, T. Rhadfi, H. Preud’Homme, M.A. Atieh, Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent, Chem. Eng. J., 317 (2017) 331–342.
  26. L. Wang, L. Yuan, K. Chen, Y. Zhang, Q. Deng, S. Du, Q. Huang, L. Zheng, J. Zhang, Z. Chai, Loading actinides in multilayered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide MXene, ACS Appl. Mater. Interfaces, 8 (2016) 16396–16403.
  27. Y. Wu, H. Pang, Y. Liu, X. Wang, S. Yu, D. Fu, J. Chen, X. Wang, Environmental remediation of heavy metal ions by novelnanomaterials: a review, Environ. Pollut., 246 (2019) 608–620.
  28. K. Rasool, R.P. Pandey, P.A. Rasheed, S. Buczek, Y. Gogotsi, K.A. Mahmoud, Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes), Appl. Mater. Today, 30 (2019) 80–102.
  29. I. Ihsanullah, MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: progress, challenges and prospects, Chem. Eng. J., 388 (2020) 124340.
  30. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23 (2011) 4248–4253.
  31. R. Sheha, E. Metwally, Equilibrium isotherm modeling of cesium adsorption onto magnetic materials, J. Hazard. Mater., 143 (2007) 354–361.
  32. A. Günay, E. Arslankaya, I. Tosun, Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics, J. Hazard. Mater., 146 (2007) 362–371.
  33. H. Yuh-Shan, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics, 59 (2004) 171–177.
  34. Y.-S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  35. P. Mark, L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K, J. Phys. Chem. A, 105 (2001) 9954–9960.
  36. O.S. Lee, M.A. Carignano, Exfoliation of electrolyte-intercalated graphene: molecular dynamics simulation study, J. Phys. Chem., 119 (2015) 19415–19422.
  37. S. Park, F. Khalili-Araghi, E. Tajkhorshid, K. Schulten, Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality, J. Chem. Phys., 119 (2003) 3559–3566.
  38. S. Park, K. Schulten, Calculating potentials of mean force from steered molecular dynamics simulations, J. Chem. Phys., 120 (2004) 5946–5961.
  39. T. Yu, O.S. Lee, G.C. Schatz, Steered molecular dynamics studies of the potential of mean force for peptide amphiphile self-assembly into cylindrical nanofibers, J. Phys. Chem. A, 117 (2013) 7453–7460.
  40. M. Arrar, F.M. Boubeta, M.E. Szretter, M. Sued, L. Boechi, D. Rodriguez, On the accurate estimation of free energies using the jarzynski equality, J. Comput. Chem., 40 (2019) 688–696.
  41. F.M. Boubeta, R.M. Contestín García, E.N. Lorenzo, L. Boechi, D. Estrin, M. Sued, M. Arrar, Lessons learned about steered molecular dynamics simulations and free energy calculations, Chem. Biol. Drug Des., 93 (2019) 1129–1138.
  42. O.-S. Lee, Dynamic properties of water confined in graphenebased membrane: a classical molecular dynamics simulation study, Membranes, 9 (2019) 165.
  43. C. Pangali, M. Rao, B.J. Berne, Monte-Carlo simulation of the hydrophobic interaction, J. Chem. Phys., 71 (1979) 2975–2981.
  44. C. Jarzynski, Nonequilibrium equality for free energy differences, Phys. Rev. Lett., 78 (1997) 2690–2693.
  45. C. Jarzynski, Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach, Phys. Rev. E, 56 (1997) 5018–5035.
  46. G.J. Martyna, D.J. Tobias, M.L. Klein, Constant-pressure molecular-dynamics algorithms, J. Chem. Phys., 101 (1994) 4177–4189.
  47. S.E. Feller, Y.H. Zhang, R.W. Pastor, B.R. Brooks, Constant-pressure molecular-dynamics simulation - the Langevin piston method, J. Chem. Phys., 103 (1995) 4613–4621.
  48. T. Darden, D. York, L. Pedersen, Particle mesh Ewald - an n.Log(n) method for Ewald sums in large systems, J. Chem. Phys., 98 (1993) 10089–10092.
  49. S. Miyamoto, P.A. Kollman, Settle-an analytical version of the shake and rattle algorithm for rigid water models, J. Comput. Chem., 13 (1992) 952–962.
  50. H.H.G. Tsai, J.B. Lee, J.M. Huang, R. Juwita, A molecular dynamics study of the structural and dynamical properties of putative arsenic substituted lipid bilayers, Int. J. Mol. Sci., 14 (2013) 7702–7715.
  51. K. Xu, X. Ji, B. Zhang, C. Chen, Y.J. Ruan, L. Miao, J.J. Jiang, Charging/discharging dynamics in two-dimensional titanium carbide (MXene) slit nanopore: insights from molecular dynamic study, Electrochim. Acta, 196 (2016) 75–83.
  52. L. Kale, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, K. Schulten, NAMD2: Greater scalability for parallel molecular dynamics, J. Comput. Phys., 151 (1999) 283–312.
  53. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem., 26 (2005) 1781–1802.
  54. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics, J. Mol. Graphics, 14 (1996) 33–38.
  55. A. Feng, Y. Yu, F. Jiang, Y. Wang, L. Mi, Y. Yu, L. Song, Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene, Ceram. Int., 43 (2017) 6322–6328.
  56. K. Wang, Y. Zhou, W. Xu, D. Huang, Z. Wang, M. Hong, Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets, Ceram. Int., 42 (2016) 8419–8424.
  57. Z. Li, L. Wang, D. Sun, Y. Zhang, B. Liu, Q. Hu, A. Zhou, Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2, Mater. Sci. Eng. B, 191 (2015) 33–40.
  58. D.A. Almasri, N.B. Saleh, M.A. Atieh, G. McKay, S. Ahzi, Adsorption of phosphate on iron oxide doped halloysite nanotubes, Sci. Rep., 9 (2019) 3232.
  59. A. Jastrzębska, E. Karwowska, D. Basiak, A. Zawada, W. Ziemkowska, T. Wojciechowski, D. Jakubowska, A. Olszyna, Biological activity and bio-sorption properties of the Ti2C studied by means of zeta potential and SEM, Int. J. Electrochem. Sci., 11 (2016) 2.
  60. A.M. Jastrzębska, J. Karcz, R. Letmanowski, D. Zabost, E. Ciecierska, M. Siekierski, A. Olszyna, Synthesis of RGO/TiO2 nanocomposite flakes and characterization of their unique electrostatic properties using zeta potential measurements, J. Alloys Compd., 679 (2016) 470–484.
  61. K.S. Sing, R.T. Williams, Physisorption hysteresis loops and the characterization of nanoporous materials, J. Alloys Compd., 22 (2004) 773–782.
  62. M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials, Adv. Mater., 26 (2014) 992–1005.
  63. B. Aïssa, A. Ali, K. Mahmoud, T. Haddad, M. Nedil, Transport properties of a highly conductive 2D Ti3C2Tx MXene/graphene composite, Appl. Phys., 109 (2016) 043109.
  64. F. Chang, C. Li, J. Yang, H. Tang, M. Xue, Synthesis of a new graphene-like transition metal carbide by de-intercalating Ti3AlC2, Mater. Lett., 109 (2013) 295–298.
  65. Y. Dall’Agnese, M.R. Lukatskaya, K.M. Cook, P.-L. Taberna, Y. Gogotsi, P. Simon, High capacitance of surface-modified 2D titanium carbide in acidic electrolyte, Electrochem. Commun., 48 (2014) 118–122.
  66. Q. Hu, Y. Liu, X. Gu, Y. Zhao, Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles, Chemosphere, 181 (2017) 328–336.
  67. Y. Tian, M. Wu, X. Lin, P. Huang, Y. Huang, Synthesis of magnetic wheat straw for arsenic adsorption, J. Hazard. Mater., 193 (2011) 10–16.
  68. S. Sarkar, L.M. Blaney, A. Gupta, D. Ghosh, A.K. SenGupta, Arsenic removal from groundwater and its safe containment in a rural environment: validation of a sustainable approach, Environ. Sci. Technol., 42 (2008) 4268–4273.
  69. S. Zhang, H. Niu, Y. Cai, X. Zhao, Y. Shi, Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4, Chem. Eng. J., 158 (2010) 599–607.
  70. C. Peng, C.-A. Wang, Y. Song, Y. Huang, A novel simple method to stably synthesize Ti3AlC2 powder with high purity, Mater. Sci. Eng. A, 428 (2006) 54–58.
  71. S. Addo Ntim, S. Mitra, Adsorption of arsenic on multiwall carbon nanotube–zirconia nanohybrid for potential drinking water purification, J. Colloid Interface Sci., 375 (2012) 154–159.
  72. X.-J. Gong, W.-G. Li, D.-Y. Zhang, W.-B. Fan, X.-R. Zhang, Adsorption of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon in the presence of co-existing ions, Int. Biodeterior, Biodegrad., 102 (2015) 256–264.
  73. S.H. Lee, Y.H. Jang, D.D. Nguyen, S.W. Chang, S.C. Kim, S.M. Lee, S.S. Kim, Adsorption properties of arsenic on sulfated TiO2 adsorbents, J. Ind. Eng. Chem., 80 (2019) 444–449.
  74. C.M. Elson, D.H. Davies, E.R. Hayes, Removal of arsenic from contaminated drinking water by a chitosan/chitin mixture, Water Res., 14 (1980) 1307–1311.
  75. A. Goswami, P.K. Raul, M.K. Purkait, Arsenic adsorption using copper (II) oxide nanoparticles, Chem. Eng. Res. Des., 90 (2012) 1387–1396.
  76. T. Xu, Y. Cai, K.E. O’Shea, Adsorption and photocatalyzed oxidation of methylated arsenic species in TiO2 suspensions, Environ. Sci., 41 (2007) 5471–5477.
  77. A. Violante, S. Del Gaudio, M. Pigna, M. Pucci, C. Amalfitano, Sorption and Desorption of Arsenic by Soil Minerals and Soils in the Presence of Nutrients and Organics, Soil Mineral Microbe-Organic Interactions, Springer, 2008, pp. 39–69.
  78. S. Kundu, A.K. Gupta, Arsenic adsorption onto iron oxidecoated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization, Chem. Eng. J., 122 (2006) 93–106.
  79. K.B. Payne, T.M. Abdel-Fattah, Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength, J. Environ. Sci. Health A, 40 (2005) 723–749.
  80. S. Ananta, B. Saumen, V. Vijay, Adsorption isotherm, thermodynamic and kinetic study of arsenic (III) on iron oxide coated granular activated charcoal, Int. J. Environ. Sci., 4 (2015) 64–77.
  81. P. Mondal, C. Balomajumder, B. Mohanty, A laboratory study for the treatment of arsenic, iron, and manganese bearing ground water using Fe3+ impregnated activated carbon: effects of shaking time, pH and temperature, J. Hazard. Mater., 144 (2007) 420–426.
  82. M. Islam, R.K. Patel, Evaluation of removal efficiency of fluoride from aqueous solution using quick lime, J. Hazard. Mater., 143 (2007) 303–310.
  83. L. Mihaly-Cozmuta, A. Mihaly-Cozmuta, A. Peter, C. Nicula, H. Tutu, D. Silipas, E. Indrea, Adsorption of heavy metal cations by Na-clinoptilolite: equilibrium and selectivity studies, J. Environ. Manage., 137 (2014) 69–80.
  84. M.E. Argun, S. Dursun, Removal of heavy metal ions using chemically modified adsorbents, J. Int. Environ. Appl. Sci., 1 (2006) 27–40.
  85. M.M. Rahman, M. Adil, A.M. Yusof, Y.B. Kamaruzzaman, R.H. Ansary, Removal of heavy metal ions with acid activated carbons derived from oil palm and coconut shells, Materials, 7 (2014) 3634–3650.