References
- WHO, Guidelines for Drinking-Water Quality, Geneva, 2008.
- D. Mohan, C.U. Pittman Jr., Arsenic removal from water/
wastewater using adsorbents—a critical review, J. Hazard.
Mater., 142 (2007) 1–53.
- A.V. Vitela-Rodriguez, J.R. Rangel-Mendez, Arsenic removal
by modified activated carbons with iron hydro(oxide)
nanoparticles, J. Environ. Manage., 114 (2013) 225–231.
- W.-G. Li, X.-J. Gong, K. Wang, X.-R. Zhang, W.-B. Fan,
Adsorption characteristics of arsenic from micro-polluted water
by an innovative coal-based mesoporous activated carbon,
Bioresour. Technol., 165 (2014) 166–173.
- R. Sandoval, A.M. Cooper, K. Aymar, A. Jain, K. Hristovski,
Removal of arsenic and methylene blue from water by granular
activated carbon media impregnated with zirconium dioxide
nanoparticles, J. Hazard. Mater., 193 (2011) 296–303.
- M. Zhang, B. Gao, S. Varnoosfaderani, A. Hebard, Y. Yao,
M. Inyang, Preparation and characterization of a novel
magnetic biochar for arsenic removal, Bioresour. Technol.,
130 (2013) 457–462.
- D.M. Sherman, S.R. Randall, Surface complexation of
arsenic(V) to iron(III) (hydr)oxides: structural mechanism
from ab initio molecular geometries and EXAFS spectroscopy,
GCA, 67 (2003) 4223–4230.
- K.Y. Foo, B.H. Hameed, Mesoporous activated carbon from
wood sawdust by K2CO3 activation using microwave heating.
Bioresour. Technol., 111 (2012) 425–432.
- K. Kadirvelu, M. Kavipriya, C. Karthika, M. Radhika,
N. Vennilamani, S. Pattabhi, Utilization of various agricultural
wastes for activated carbon preparation and application for
the removal of dyes and metal ions from aqueous solutions,
Bioresour. Technol., 87 (2003) 129–132.
- K. Lizama Allende, T.D. Fletcher, G. Sun, The effect of substrate
media on the removal of arsenic, boron and iron from an
acidic wastewater in planted column reactors, Chem. Eng. J.,
179 (2012) 119–130.
- V.K. Gupta, V.K. Saini, N. Jain, Adsorption of As(III) from
aqueous solutions by iron oxide-coated sand, J. Colloid
Interface Sci., 288 (2005) 55–60.
- T.S. Singh, K.K. Pant, Equilibrium, kinetics and thermodynamic
studies for adsorption of As(III) on activated alumina,
Sep. Purif. Technol., 36 (2004) 139–147.
- M.S. Onyango, Y. Kojima, Y. Kojima, H. Matsuda, H. Matsuda,
A. Ochieng, A. Ochieng, Adsorption kinetics of arsenic removal
from groundwater by iron-modified zeolite, J. Chem. Eng.,
12 (2003) 1516–1522.
- S.-L. Lo, H.-T. Jeng, C.-H. Lai, Characteristics and adsorption
properties of iron-coated sand, Water Sci. Technol., 35 (1997)
63–70.
- C.A.J. Appelo, M.J.J. Van Der Weiden, C. Tournassat, L. Charlet,
Surface complexation of ferrous iron and carbonate on
ferrihydrite and the mobilization of arsenic, Environ. Sci.
Technol., 36 (2002) 3096–3103.
- S. Fendorf, M.J. Eick, P. Grossl, D.L. Sparks, Arsenate and
chromate retention mechanisms on goethite. 1. Surface
structure, Environ. Sci. Technol., 31 (1997) 315–320.
- K.P. Raven, A. Jain, R.H. Loeppert, Arsenite and arsenate
adsorption on ferrihydrite: kinetics, equilibrium, and adsorption
envelopes, Environ. Sci. Technol., 32 (1998) 344–349.
- W. Driehaus, M. Jekel, U. Hildebrandt, Granular ferric
hydroxide—a new adsorbent for the removal of arsenic from
natural water, J. Water Supply Res. Technol., 47 (1998) 30–35.
- Y. Xu, L. Axe, Synthesis and characterization of iron oxidecoated
silica and its effect on metal adsorption, J. Colloid
Interface Sci., 282 (2005) 11–19.
- J.A. Muñoz, A. Gonzalo, M. Valiente, Arsenic Adsorption by
Fe(III)-loaded open-celled cellulose sponge. Thermodynamic
and selectivity aspects, Environ. Sci. Technol., 36 (2002) 3405–3411.
- Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu,
Y. Tian, Unique lead adsorption behavior of activated hydroxyl
group in two-dimensional titanium carbide, J. Am. Chem. Soc.,
136 (2014) 4113–4116.
- Y. Ying, Y. Liu, X. Wang, Y. Mao, W. Cao, P. Hu, X. Peng, Twodimensional
titanium carbide for efficiently reductive removal
of highly toxic chromium(VI) from water, ACS Appl. Mater.
Interfaces, 7 (2015) 1795–1803.
- M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like twodimensional
materials, Chem. Rev., 113 (2013) 3766–3798.
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang,
S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect
in atomically thin carbon films, J. Sci., 306 (2004) 666–669.
- A.K. Fard, G. Mckay, R. Chamoun, T. Rhadfi, H. Preud’Homme,
M.A. Atieh, Barium removal from synthetic natural and
produced water using MXene as two dimensional (2-D)
nanosheet adsorbent, Chem. Eng. J., 317 (2017) 331–342.
- L. Wang, L. Yuan, K. Chen, Y. Zhang, Q. Deng, S. Du, Q. Huang,
L. Zheng, J. Zhang, Z. Chai, Loading actinides in multilayered
structures for nuclear waste treatment: the first case study of
uranium capture with vanadium carbide MXene, ACS Appl.
Mater. Interfaces, 8 (2016) 16396–16403.
- Y. Wu, H. Pang, Y. Liu, X. Wang, S. Yu, D. Fu, J. Chen, X. Wang,
Environmental remediation of heavy metal ions by novelnanomaterials:
a review, Environ. Pollut., 246 (2019) 608–620.
- K. Rasool, R.P. Pandey, P.A. Rasheed, S. Buczek, Y. Gogotsi,
K.A. Mahmoud, Water treatment and environmental remediation
applications of two-dimensional metal carbides
(MXenes), Appl. Mater. Today, 30 (2019) 80–102.
- I. Ihsanullah, MXenes (two-dimensional metal carbides) as
emerging nanomaterials for water purification: progress,
challenges and prospects, Chem. Eng. J., 388 (2020) 124340.
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon,
L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional
nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater.,
23 (2011) 4248–4253.
- R. Sheha, E. Metwally, Equilibrium isotherm modeling of
cesium adsorption onto magnetic materials, J. Hazard. Mater.,
143 (2007) 354–361.
- A. Günay, E. Arslankaya, I. Tosun, Lead removal from aqueous
solution by natural and pretreated clinoptilolite: adsorption
equilibrium and kinetics, J. Hazard. Mater., 146 (2007) 362–371.
- H. Yuh-Shan, Citation review of Lagergren kinetic rate equation
on adsorption reactions, Scientometrics, 59 (2004) 171–177.
- Y.-S. Ho, G. McKay, Pseudo-second order model for
sorption processes, Process Biochem., 34 (1999) 451–465.
- P. Mark, L. Nilsson, Structure and dynamics of the TIP3P, SPC,
and SPC/E water models at 298 K, J. Phys. Chem. A, 105 (2001)
9954–9960.
- O.S. Lee, M.A. Carignano, Exfoliation of electrolyte-intercalated
graphene: molecular dynamics simulation study, J. Phys.
Chem., 119 (2015) 19415–19422.
- S. Park, F. Khalili-Araghi, E. Tajkhorshid, K. Schulten, Free
energy calculation from steered molecular dynamics simulations
using Jarzynski’s equality, J. Chem. Phys., 119 (2003) 3559–3566.
- S. Park, K. Schulten, Calculating potentials of mean force
from steered molecular dynamics simulations, J. Chem. Phys.,
120 (2004) 5946–5961.
- T. Yu, O.S. Lee, G.C. Schatz, Steered molecular dynamics
studies of the potential of mean force for peptide amphiphile
self-assembly into cylindrical nanofibers, J. Phys. Chem. A,
117 (2013) 7453–7460.
- M. Arrar, F.M. Boubeta, M.E. Szretter, M. Sued, L. Boechi,
D. Rodriguez, On the accurate estimation of free energies
using the jarzynski equality, J. Comput. Chem., 40 (2019)
688–696.
- F.M. Boubeta, R.M. Contestín García, E.N. Lorenzo, L. Boechi,
D. Estrin, M. Sued, M. Arrar, Lessons learned about steered
molecular dynamics simulations and free energy calculations,
Chem. Biol. Drug Des., 93 (2019) 1129–1138.
- O.-S. Lee, Dynamic properties of water confined in graphenebased
membrane: a classical molecular dynamics simulation
study, Membranes, 9 (2019) 165.
- C. Pangali, M. Rao, B.J. Berne, Monte-Carlo simulation of the
hydrophobic interaction, J. Chem. Phys., 71 (1979) 2975–2981.
- C. Jarzynski, Nonequilibrium equality for free energy
differences, Phys. Rev. Lett., 78 (1997) 2690–2693.
- C. Jarzynski, Equilibrium free-energy differences from
nonequilibrium measurements: a master-equation approach,
Phys. Rev. E, 56 (1997) 5018–5035.
- G.J. Martyna, D.J. Tobias, M.L. Klein, Constant-pressure
molecular-dynamics algorithms, J. Chem. Phys., 101 (1994)
4177–4189.
- S.E. Feller, Y.H. Zhang, R.W. Pastor, B.R. Brooks, Constant-pressure
molecular-dynamics simulation - the Langevin piston
method, J. Chem. Phys., 103 (1995) 4613–4621.
- T. Darden, D. York, L. Pedersen, Particle mesh Ewald - an
n.Log(n) method for Ewald sums in large systems, J. Chem.
Phys., 98 (1993) 10089–10092.
- S. Miyamoto, P.A. Kollman, Settle-an analytical version of the
shake and rattle algorithm for rigid water models, J. Comput.
Chem., 13 (1992) 952–962.
- H.H.G. Tsai, J.B. Lee, J.M. Huang, R. Juwita, A molecular
dynamics study of the structural and dynamical properties
of putative arsenic substituted lipid bilayers, Int. J. Mol. Sci.,
14 (2013) 7702–7715.
- K. Xu, X. Ji, B. Zhang, C. Chen, Y.J. Ruan, L. Miao, J.J. Jiang,
Charging/discharging dynamics in two-dimensional titanium
carbide (MXene) slit nanopore: insights from molecular
dynamic study, Electrochim. Acta, 196 (2016) 75–83.
- L. Kale, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy,
N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan,
K. Schulten, NAMD2: Greater scalability for parallel molecular
dynamics, J. Comput. Phys., 151 (1999) 283–312.
- J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid,
E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, Scalable
molecular dynamics with NAMD, J. Comput. Chem., 26 (2005)
1781–1802.
- W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular
dynamics, J. Mol. Graphics, 14 (1996) 33–38.
- A. Feng, Y. Yu, F. Jiang, Y. Wang, L. Mi, Y. Yu, L. Song, Fabrication
and thermal stability of NH4HF2-etched Ti3C2 MXene, Ceram.
Int., 43 (2017) 6322–6328.
- K. Wang, Y. Zhou, W. Xu, D. Huang, Z. Wang, M. Hong,
Fabrication and thermal stability of two-dimensional carbide
Ti3C2 nanosheets, Ceram. Int., 42 (2016) 8419–8424.
- Z. Li, L. Wang, D. Sun, Y. Zhang, B. Liu, Q. Hu, A. Zhou,
Synthesis and thermal stability of two-dimensional carbide
MXene Ti3C2, Mater. Sci. Eng. B, 191 (2015) 33–40.
- D.A. Almasri, N.B. Saleh, M.A. Atieh, G. McKay, S. Ahzi,
Adsorption of phosphate on iron oxide doped halloysite
nanotubes, Sci. Rep., 9 (2019) 3232.
- A. Jastrzębska, E. Karwowska, D. Basiak, A. Zawada,
W. Ziemkowska, T. Wojciechowski, D. Jakubowska, A. Olszyna,
Biological activity and bio-sorption properties of the Ti2C
studied by means of zeta potential and SEM, Int. J. Electrochem.
Sci., 11 (2016) 2.
- A.M. Jastrzębska, J. Karcz, R. Letmanowski, D. Zabost,
E. Ciecierska, M. Siekierski, A. Olszyna, Synthesis of RGO/TiO2 nanocomposite flakes and characterization of their unique
electrostatic properties using zeta potential measurements,
J. Alloys Compd., 679 (2016) 470–484.
- K.S. Sing, R.T. Williams, Physisorption hysteresis loops and
the characterization of nanoporous materials, J. Alloys Compd.,
22 (2004) 773–782.
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th
anniversary article: MXenes: a new family of two-dimensional
materials, Adv. Mater., 26 (2014) 992–1005.
- B. Aïssa, A. Ali, K. Mahmoud, T. Haddad, M. Nedil, Transport
properties of a highly conductive 2D Ti3C2Tx MXene/graphene
composite, Appl. Phys., 109 (2016) 043109.
- F. Chang, C. Li, J. Yang, H. Tang, M. Xue, Synthesis of a new
graphene-like transition metal carbide by de-intercalating
Ti3AlC2, Mater. Lett., 109 (2013) 295–298.
- Y. Dall’Agnese, M.R. Lukatskaya, K.M. Cook, P.-L. Taberna,
Y. Gogotsi, P. Simon, High capacitance of surface-modified 2D
titanium carbide in acidic electrolyte, Electrochem. Commun.,
48 (2014) 118–122.
- Q. Hu, Y. Liu, X. Gu, Y. Zhao, Adsorption behavior and
mechanism of different arsenic species on mesoporous
MnFe2O4 magnetic nanoparticles, Chemosphere, 181 (2017)
328–336.
- Y. Tian, M. Wu, X. Lin, P. Huang, Y. Huang, Synthesis of
magnetic wheat straw for arsenic adsorption, J. Hazard. Mater.,
193 (2011) 10–16.
- S. Sarkar, L.M. Blaney, A. Gupta, D. Ghosh, A.K. SenGupta,
Arsenic removal from groundwater and its safe containment
in a rural environment: validation of a sustainable approach,
Environ. Sci. Technol., 42 (2008) 4268–4273.
- S. Zhang, H. Niu, Y. Cai, X. Zhao, Y. Shi, Arsenite and
arsenate adsorption on coprecipitated bimetal oxide magnetic
nanomaterials: MnFe2O4 and CoFe2O4, Chem. Eng. J., 158 (2010)
599–607.
- C. Peng, C.-A. Wang, Y. Song, Y. Huang, A novel simple method
to stably synthesize Ti3AlC2 powder with high purity, Mater.
Sci. Eng. A, 428 (2006) 54–58.
- S. Addo Ntim, S. Mitra, Adsorption of arsenic on multiwall
carbon nanotube–zirconia nanohybrid for potential drinking
water purification, J. Colloid Interface Sci., 375 (2012) 154–159.
- X.-J. Gong, W.-G. Li, D.-Y. Zhang, W.-B. Fan, X.-R. Zhang,
Adsorption of arsenic from micro-polluted water by an
innovative coal-based mesoporous activated carbon in the
presence of co-existing ions, Int. Biodeterior, Biodegrad., 102
(2015) 256–264.
- S.H. Lee, Y.H. Jang, D.D. Nguyen, S.W. Chang, S.C. Kim,
S.M. Lee, S.S. Kim, Adsorption properties of arsenic on sulfated
TiO2 adsorbents, J. Ind. Eng. Chem., 80 (2019) 444–449.
- C.M. Elson, D.H. Davies, E.R. Hayes, Removal of arsenic from
contaminated drinking water by a chitosan/chitin mixture,
Water Res., 14 (1980) 1307–1311.
- A. Goswami, P.K. Raul, M.K. Purkait, Arsenic adsorption using
copper (II) oxide nanoparticles, Chem. Eng. Res. Des., 90 (2012)
1387–1396.
- T. Xu, Y. Cai, K.E. O’Shea, Adsorption and photocatalyzed
oxidation of methylated arsenic species in TiO2 suspensions,
Environ. Sci., 41 (2007) 5471–5477.
- A. Violante, S. Del Gaudio, M. Pigna, M. Pucci, C. Amalfitano,
Sorption and Desorption of Arsenic by Soil Minerals and
Soils in the Presence of Nutrients and Organics, Soil Mineral
Microbe-Organic Interactions, Springer, 2008, pp. 39–69.
- S. Kundu, A.K. Gupta, Arsenic adsorption onto iron oxidecoated
cement (IOCC): regression analysis of equilibrium data
with several isotherm models and their optimization, Chem.
Eng. J., 122 (2006) 93–106.
- K.B. Payne, T.M. Abdel-Fattah, Adsorption of arsenate and
arsenite by iron-treated activated carbon and zeolites: effects of
pH, temperature, and ionic strength, J. Environ. Sci. Health A,
40 (2005) 723–749.
- S. Ananta, B. Saumen, V. Vijay, Adsorption isotherm,
thermodynamic and kinetic study of arsenic (III) on iron oxide
coated granular activated charcoal, Int. J. Environ. Sci., 4 (2015)
64–77.
- P. Mondal, C. Balomajumder, B. Mohanty, A laboratory study
for the treatment of arsenic, iron, and manganese bearing
ground water using Fe3+ impregnated activated carbon: effects
of shaking time, pH and temperature, J. Hazard. Mater.,
144 (2007) 420–426.
- M. Islam, R.K. Patel, Evaluation of removal efficiency of fluoride
from aqueous solution using quick lime, J. Hazard. Mater.,
143 (2007) 303–310.
- L. Mihaly-Cozmuta, A. Mihaly-Cozmuta, A. Peter, C. Nicula,
H. Tutu, D. Silipas, E. Indrea, Adsorption of heavy metal
cations by Na-clinoptilolite: equilibrium and selectivity studies,
J. Environ. Manage., 137 (2014) 69–80.
- M.E. Argun, S. Dursun, Removal of heavy metal ions using
chemically modified adsorbents, J. Int. Environ. Appl. Sci.,
1 (2006) 27–40.
- M.M. Rahman, M. Adil, A.M. Yusof, Y.B. Kamaruzzaman,
R.H. Ansary, Removal of heavy metal ions with acid activated
carbons derived from oil palm and coconut shells, Materials,
7 (2014) 3634–3650.