References

  1. Z. Abidin, N. Shamsudin, Optimisation of a method to extract the active coagulant agent from Jatrophacurcas seeds for use in turbidity removal, Ind. Crops Prod., 41 (2013) 319–323.
  2. T. Nharingo, M.T. Zivurawa, U. Guyo, Exploring the use of cactus Opuntia ficus indica in the biocoagulation–flocculation of Pb(II) ions from wastewaters, Int. J. Environ. Sci. Technol., 12 (2015) 3791–3802.
  3. N.H.A. Al-Saati, E.H. Hwaidi, S.H. Jassam, Comparing cactus (Opuntia spp.) and alum as coagulants for water treatment at Al-Mashroo Canal: a case study, Int. J. Environ. Sci. Technol., 13 (2016) 2875–2882.
  4. S.C. Bondy, The neurotoxicity of environmental aluminum is still an issue, Neurotoxicology, 31 (2010) 575–581.
  5. F. Trond, Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water, Brain Res. Bull., 55 (2001) 187–196.
  6. J.M. Sieliechi, G.J. Kayem, I. Sandu, Effect of water treatment residuals (aluminum and iron ions) on humanhealth and drinking water distribution systems, Int. J. Conserv. Sci., 1 (2010) 175–182.
  7. M. Sciban, M. Klasnja, M. Antov, B. Skrbic, Removal of water turbidity by natural coagulants obtained from chestnut and acorn, Bioresour. Technol., 100 (2009) 6639–6643.
  8. A.A. Abia, M. Harsfall, O. Didi, The use of chemically modified and unmodified cassava waste for the removal of Cd, Cu and Zn ions from aqueous solution, Bioresour. Technol., 90 (2003) 345–348.
  9. A. Fernández, F. Herrera, M. Mas y Rubí, D. Mejías, A. Diaz, Evaluación delexudadogomoso de Acacia siameacomo coagulante en la clarificación de las aguas para consumo humano, Rev. Téc. Ing. Univ. Zulia, 31 (2008) 32–40.
  10. Z. Li, N. Li, H. Zhang, Studies and application processes on flocculant in water treatment in China, Electron. J. Geotech. Eng., 14 (2009) 134–138.
  11. P.M. Armenante, Coagulation and Flocculation. Available at: cpe.njit.edu/dlnotes/che685/cls07-1.pdf (accessed November 22, 2014)
  12. B. Mounir, Z. Abdeljalil, A. Abdellah, Comparison of the efficacy of two bioflocculants in water treatment, Int. J. Eng. Sci., 3 (2014) 734–737.
  13. S.M. Miller, E.J. Fugate, V.O. Craver, Toward understanding the efficacy and mechanism of Opuntia spp. as a natural coagulant for potential application in water treatment, Environ. Sci. Technol., 42 (2008) 4274–4279.
  14. L. Gomes, E.P. Troiani, Opuntiaficus as a polyelectrolyte source for the treatment of tannery wastewater, Desal. Water Treat., 57 (2016) 10181–10187.
  15. S. Vishali, R. Karthikeyan, Cactus opuntia (ficus-indica): an eco-friendly alternative coagulant in the treatment of paint effluent, Desal. Water Treat., 56 (2015) 1489–1497.
  16. A.L. Ahmad, S.S. Wong, T.T. Teng, A. Zuhairi, Optimization of coagulation–flocculation process for pulp and paper mill effluent by response surface methodological analysis, J. Hazard. Mater., 145 (2007) 162–168.
  17. M. Khayet, A.Y. Zahrim, N. Hilal, Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology, Chem. Eng. J., 167 (2011) 77–83.
  18. D.C. Montgomery, Design and Analysis of Experiments, 5th ed., John Wiley & Sons, New York, NY, 2001.
  19. F.C. Stintzing, R. Carle, Cactus stems (Opuntia spp): a review on their chemistry, technology and uses, Mol. Nutr. Food Res., 49 (2005) 175–194.
  20. M.E. Malainine, A. Dufresne, D. Dupeyre, M. Mahrouz, R. Vuong, M.R. Vignon, Structure and morphology of cladodes and spines of Opuntia ficus-indica. Cellulose extraction and characterisation, Carbohydr. Polym., 51 (2003) 77–83.
  21. M.V. Batista, A.F. Mustafa, G.R.A. Santos, F.F.R. de Carvalho, J.C.B. Dubeuxjr, M.A. Lira, S.B.P. Barbosa, Chemical composition and ruminal dry matter and crude protein degradability of spineless cactus, J. Agron. Crop Sci., 189 (2003) 123–126.
  22. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington, DC, 1998.
  23. A. Aleboyeh, N. Daneshvar, M.B. Kasiri, Optimization of C.I. Acid Red 14 azo dye removal by electrocoagulation batch process with response surface methodology, Chem. Eng. Process., 47 (2008) 827–832.
  24. W. Jiang, J.A. Joens, D.D. Dionysiou, K.E. O’Shea, Optimization of photocatalytic performance of TiO2 coated glass microspheres using response surface methodology and the application for degradation of dimethyl phthalate, J. Photochem. Photobiol., A, 262 (2013) 7–13.
  25. A. Rabahi, D. Hauchard, S. Arris, M. Berkani, W. Achouri, A. Meniai, M. Bencheikh-Lehocine, Leachate effluent COD removal using electrocoagulation: a response surface methodology (RSM) optimization and modelling, Desal. Water Treat., 114 (2018) 81–92.
  26. M. Elibol, Response surface methodological approach for inclusion of perfluorocarbon in actinorhodin fermentation medium, Process. Biochem., 38 (2002) 667–673.
  27. L. Gomes, E.P. Troiani, G.R. Malpass, J. Nozaki, Opuntia ficus indica as a polyelectrolyte source for the treatment of tannery wastewater, Desal. Water Treat., 57 (2016) 10181–10187.
  28. O. Bouaouine, I. Bourven, F. Khalil, M. Baudu, Identification of functional groups of Opuntia ficus-indica involved in coagulation process after its active part extraction, Environ. Sci. Pollut. Res., 25 (2018) 11111–11119.