References

  1. A. Altaee, A. Sharif, Pressure retarded osmosis: advancement in the process applications for power generation and desalination, Desalination, 356 (2015) 31–46.
  2. G.Z. Ramon, B.J. Feinberg, E.M.V. Hoek, Membrane-based production of salinity-gradient power, Energy Environ. Sci., 4 (2011) 4423.
  3. B.E. Logan, M. Elimelech, Membrane-based processes for sustainable power generation using water, Nature, 4888 (2012) 313–319.
  4. B.B. Sales, F. Liu, O. Schaetzle, C.J.N. Buisman, H.V.M. Hamelers, Electrochemical characterization of a supercapacitor flow cell for power production from salinity gradients, Electrochim. Acta, 86 (2012) 298−304.
  5. J.W. Post, J. Veerman, H.V.M. Hamelers, G.J.W. Euverink, S.J. Metz, K. Nymeijer, C.J.N. Buisman. Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis, J. Membr. Sci., 288 (2007) 218−230.
  6. A. Achilli, A.E. Childress, Pressure retarded osmosis: from the vision of Sidney Loeb to the first prototype installation — review, Desalination, 261 (2010) 205−211.
  7. K.L. Lee, R.W. Baker, H.K. Lonsdale, Membranes for power generation by pressure-retarded osmosis, J. Membr. Sci., 8 (1981) 141−171.
  8. K. Gerstandt, K.-V. Peinemann, S.E. Skilhagen, T. Thorsen, T. Holt, Membrane processes in energy supply for an osmotic power plant, Desalination, 224 (2008) 64−70.
  9. J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C. Beck Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer, 42 (2001) 261–272.
  10. N.M. Julkapli, S. Bagheri, Progress on nanocrystalline cellulose biocomposites, React. Funct. Polym., 112 (2017) 9–21.
  11. M.E. Pasaoglu, I. Koyuncu, Z. Candan, Mechanical Strength Improvement of Polyacrylonitrile (PAN) Nanofiber TFC Pressure Retarded Osmosis (PRO) Membrane Using Cellulose Nanocrystals (CNCs), 9th International Water Association (IWA) Membrane Technology Conference & Exhibition for Water and Wastewater Treatment and Reuse (IWA-MTC 2019), 23–27 June 2019, Toulouse, France, 2019.
  12. W. Helbert, J.Y. Cavaillé, A. Dufresne, Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior, Polym. Compos., 17 (1996) 604–611.
  13. K. Abe, S. Iwamoto, H. Yano, Obtaining cellulose nanofibers with a uniform width of 15 nm from wood, Biomacromolecules, 8 (2007) 3276–3278.
  14. M. Börjesson, G. Westman, Crystalline Nanocellulose — Preparation, Modification, and Properties, M. Poletto, H.L. Ornaghi Jr., Eds., Cellulose-Fundamental Aspects and Current Trends, IntechOpen, London, 2015, pp. 161–191.
  15. Y. Wyart, G. Georges, C. Deumié, C. Amra, P. Moulin, Membrane characterization by microscopic methods: multiscale structure, J. Membr. Sci., 315 (2008) 82–92.
  16. Z.-K. Xu, X.-J. Huang, L.-S. Wan, Techniques for Membrane Surface Characterization, In: Surface Engineering of Polymer Membranes (Advanced Topics in Science and Technology in China), Springer, Berlin, Heidelberg, 2009, p. 333.
  17. W.J. Lau, A.F. Ismail, P.S. Goh, N. Hilal, B.S. Ooi, Characterization methods of thin film composite nanofiltration membranes, Sep. Purif. Rev., 44 (2015) 135–156.
  18. F. Liu, L.L. Wang, D.W. Li, Q.S. Liu, B.Y. Deng, A review: the effect of the microporous support during interfacial polymerization on the morphology and performance of a thin film composite membrane for liquid purification, RSC Adv., 9 (2019) 35417–35428.
  19. M. Asrofi, H. Abral, A. Kasim, A. Pratoto, XRD and FTIR studies of nanocrystalline cellulose from water hyacinth (Eichornia crassipes) fiber, J. Metastable Nanocryst. Mater., 29 (2017) 9–16.
  20. S.X. Jin, J.L. Yu, Y.S. Zheng, W.-Y. Wang, B.J. Xin, C.-W. Kan. Preparation and characterization of electrospun PAN/PSA carbonized nanofibers: experiment and simulation study, Nanomaterials (Basel, Switzerland), 8 (2018) 821.
  21. L.M. Bai, N. Bossa, F.S. Qu, J. Winglee, G.B. Li, K. Sun, H. Liang, M.R. Wiesner, Comparison of hydrophilicity and mechanical properties of nanocomposite membranes with cellulose nanocrystals and carbon nanotubes, Environ. Sci. Technol., 51 (2017) 253–262.
  22. M. Yousefzadeh, Modeling and Simulation of the Electrospinning Process, M. Afshari, Ed., Electrospun Nanofibers, A Volume in Woodhead Publishing Series in Textiles, Duxford, Cambridge, Kidlington, 2017, pp. 277–301.
  23. S.S. Murthe, M.S.M. Saheed, V. Perumal, M.S.M. Saheed, N.M. Mohamed, Electrospun Nanofibers for Biosensing Applications, S.C.B. Gopinanth, T. Lakshmipriya, Ed., Nanobiosensors for Biomolecular Targeting: A Volume in Micro and Nano Technologies, Elsevier, Amsterdam, Oxford, Massachusetts, 2019, pp. 253–267.
  24. J.R. McCutcheon, M. Elimelech, Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes, J. Membr. Sci., 318 (2008) 458–466.
  25. R.M. El Khaldi, M.E. Pasaoglu, S. Guclu, Y.Z. Menceloglu, R. Ozdogan, M. Celebi, M.A. Kaya, I. Koyuncu, Fabrication of high-performance nanofiber-based FO membranes, Desal. Water Treat., 147 (2019) 56–72.
  26. N.N. Bui, M.L. Lind, E.M.V. Hoek, J.R. McCutheon, Electrospun nanofiber supported thin film composite membranes for engineered osmosis, J. Membr. Sci., 385–386 (2011) 10–19.
  27. R.C. Ong, T.-S. Chung, J.S. de Wit, B.J. Helmer, Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes, J. Membr. Sci., 473 (2015) 63–71.
  28. N. Widjojo, T.-S. Chung, M. Weber, C. Maletzko, V. Warzelhan, A sulfonated poly-phenylenesulfone (sPPSU) as the supporting substrate in thin film composite (TFC) membranes with enhanced performance for forward osmosis (FO), Chem. Eng., 220 (2013) 15–23.
  29. K.Y. Wang, T.-S. Chung, G. Amy, Developing thin-filmcomposite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization, AIChE J., 58 (2012) 770–781.