References

  1. J.C. Crittenden, R.R. Trussell, D.W. Hand, K.J. Howe, G. Tchobanoglous, MWH’s Water Treatment, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012. https://doi.org/10.1002/ 9781118131473.
  2. A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, Introduction, In: Adsorption Processes for Water Treatment and Purification, Springer International Publishing, 2017, pp. 1–18. https://doi.org/10.1007/978-3-319-58136-1_1.
  3. R.D. Letterman, S. Yiacoumi, Chapter 8 – Coagulation and Flocculaton, J.K. Edzwald, Ed., Water Quality & Treatment: A Handbook on Drinking Water (Water Resources and Environmental Engineering Series), American Water Works Association, McGraw-Hill Education, 2010. Available at: www.awwa.org.
  4. C.M. Li, D.H. Wang, X. Xu, M. Xu, Z. Wang, R.Y. Xiao, Tracking changes in composition and amount of dissolved organic matter throughout drinking water treatment plants by comprehensive two-dimensional gas chromatography–quadrupole mass spectrometry, Sci. Total Environ., 609 (2017) 123–131.
  5. D. Tatar, İkitelli İçmesuyu Arıtma Tesisleri’nde Pilot Ölçekli Granüler Aktif Karbon Testçalışmaları, Istanbul, 2018.
  6. T.H. Boyer, P.C. Singer, Bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-product precursors, Water Res., 39 (2005) 1265–1275.
  7. L. Liang, P.C. Singer, Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water, Environ. Sci. Technol., 37 (2003) 2920–2928.
  8. P.C. Singer, K. Bilyk, Enhanced coagulation using a magnetic ion exchange resin, Water Res., 36 (2002) 4009–4022.
  9. E.E. Lavonen, D.N. Kothawala, L.J. Tranvik, M. Gonsior, P. Schmitt-Kopplin, S.J. Köhler, Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production, Water Res., 85 (2015) 286–294.
  10. S.A. Baghoth, S.K. Sharma, G.L. Amy, Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation–emission matrices and PARAFAC, Water Res., 45 (2011) 797–809.
  11. P. Hobson, C. Fazekas, J. House, R. Daly, T. Kildea, S. Giglio, M.D. Burch, T.F. Lin, Y.M. Chen, Tastes and Odours in Reservoirs, Research Report 73, 2010, p. 98.
  12. M. Fakioğlu, M.E. Karpuzcu, İ. Öztürk, Ç.M. Bölümü, İ. Fakültesi, İ.T. Üniversitesi, T. İstanbul, A. Makalesi/Research, A. Öz, İçme sularında alg kaynaklı tat ve koku sorununun değerlendirilmesi [Evaluation of algae related taste and odor problem in drinking water], 24 (2018) 1141–1156, https://doi. org/10.5505/pajes.2018.65290.
  13. R. Srinivasan, G.A. Sorial, Treatment of taste and odor causing compounds 2-methyl isoborneol and geosmin in drinking water: a critical review, J. Environ. Sci., 23 (2011) 1–13.
  14. H.K. Shon, S. Phuntsho, D.S. Chaudhary, S. Vigneswaran, J. Cho, Nanofiltration for water and wastewater treatment – a mini review, Drinking Water Eng. Sci., 6 (2013) 47–53.
  15. İ. Koyuncu, Nanofiltrasyon membrantları ile tuz gideriminde organik iyon etkisi, Istanbul Teknik Universitesi, 2001. Available at: https://books.google.com.tr/books?id=6DqjngEACAAJ.
  16. I. Koyuncu, Su/Atıksu Arıtılması ve Geri Kazanılmasında Membran Teknolojileri ve Uygulamaları, 2018.
  17. R.W. Peters, Granular Activated Carbon: Design, Operation, and Cost, R.M. Clark, B.W. Lykins Jr., Lewis Publishers, Inc., Chelsea, MI, 1989, 342 pages [ISBN NO.: 0-87371-114-
  18. , Environ. Prog. 9 (1990) M8–M8. https://doi.org/10.1002/ep.670090208.
  19. ASTM International, Standard Practice for the Prediction of Contaminant Adsorption on GAC in Aqueous Systems Using Rapid Small-Scale Column Tests, Water, 3 (2014) 1–6. https:// doi.org/10.1520/D6586-03R08.2.