References

  1. L.E. de-Bashan, Y. Bashan, Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003), Water Res., 38 (2004) 4222–4246.
  2. H. Ozgun, R.K. Dereli, M.E. Ersahin, C. Kinaci, H. Spanjers, J.B. van Lier, A review of anaerobic membrane bioreactors for municipal wastewater treatment: integration options, limitations and expectations, Sep. Purif. Technol., 118 (2013) 89–104.
  3. L. Egle, H. Rechberger, J. Krampe, M. Zessner, Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies, Sci. Total Environ., 571 (2016) 522–542.
  4. A.J. Ansari, F.I. Hai, W.E. Price, J.E. Drewes, L.D. Nghiem, Forward osmosis as a platform for resource recovery from municipal wastewater - a critical assessment of the literature, J. Membr. Sci., 529 (2017) 195–206.
  5. A.L. Smith, L.B. Stadler, N.G. Love, S.J. Skerlos, L. Raskin, Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: a critical review, Bioresour. Technol., 122 (2012) 149–159.
  6. Y. Xu, L. Zhou, Q. Jia, Nutrient recovery of source-separated urine via forward osmosis and a pilot-scale resource-oriented sanitation system, Desal. Water Treat., 91 (2017) 252–259.
  7. M. Xie, H.K. Shon, S.R. Gray, M. Elimelech, Membrane-based processes for wastewater nutrient recovery: technology, challenges, and future direction, Water Res., 89 (2016) 210–221.
  8. S. Subramani, R.C. Panda, B. Panda, Studies on performances of membrane, draw solute and modeling of forward osmosis process in desalination – a review, Desal. Water Treat., 70 (2017) 46–63.
  9. A.J. Ansari, F.I. Hai, W.S. Guo, H.H. Ngo, W.E. Price, L.D. Nghiem, Factors governing the pre-concentration of wastewater using forward osmosis for subsequent resource recovery, Sci. Total Environ., 566–567 (2016) 559–566.
  10. S.Y. Lee, C.H. Boo, M. Elimelech, S.K. Hong, Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO), J. Membr. Sci., 365 (2010) 34–39.
  11. N.C. Nguyen, S.S. Chen, H.Y. Yang, N.T. Hau, Application of forward osmosis on dewatering of high nutrient sludge, Bioresour. Technol., 132 (2013) 224–229.
  12. N.T. Hau, S.S. Chen, N.C. Nguyen, K.Z. Huang, H.H. Ngo, W. Guo, Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge, J. Membr. Sci., 455 (2014) 305–311.
  13. J.F. Zhang, Q.H. She, V.W.C. Chang, C.Y. Tang, R.D. Webster, Mining nutrients (N, K, P) from urban source-separated urine by forward osmosis dewatering, Environ. Sci. Technol., 48 (2014) 3386–3394.
  14. F. Volpin, H. Heo, M.A. Hasan Johir, J. Cho, S. Phuntsho, H.K. Shon, Techno-economic feasibility of recovering phosphorus, nitrogen and water from dilute human urine via forward osmosis, Water Res., 150 (2019) 47–55.
  15. T.Y. Cath, S. Gormly, E.G. Beaudry, M.T. Flynn, V.D. Adams, A.E. Childress, Membrane contactor processes for wastewater reclamation in space: Part I. Direct osmotic concentration as pretreatment for reverse osmosis, J. Membr. Sci., 257 (2005) 85–98.
  16. X.W. Zhang, Z.Y. Ning, D.K. Wang, J.C. Diniz da Costa, Processing municipal wastewaters by forward osmosis using CTA membrane, J. Membr. Sci., 468 (2014) 269–275.
  17. Y. Gao, Z. Fang, P. Liang, X. Huang, Direct concentration of municipal sewage by forward osmosis and membrane fouling behavior, Bioresour. Technol., 247 (2018) 730–735.
  18. G.L. Qiu, Y.-P. Ting, Direct phosphorus recovery from municipal wastewater via osmotic membrane bioreactor (OMBR) for wastewater treatment, Bioresour. Technol., 170 (2014) 221–229.
  19. M. Xie, L.D. Nghiem, W.E. Price, M. Elimelech, Toward resource recovery from wastewater: extraction of phosphorus from digested sludge using a hybrid forward osmosis-membrane distillation process, Environ. Sci. Technol. Lett., 1 (2014) 191–195.
  20. Z.Y. Wu, S.Q. Zou, B. Zhang, L.J. Wang, Z. He, Forward in-situ osmosis promoted formation of struvite with simultaneous water recovery from digested swine wastewater, Chem. Eng. J., 342 (2018) 274–280.
  21. N.T. Hancock, W.A. Phillip, M. Elimelech, T.Y. Cath, Bidirectional permeation of electrolytes in osmotically driven membrane processes, Environ. Sci. Technol., 45 (2011) 10642–10651.
  22. K. Lutchmiah, A.R.D. Verliefde, K. Roest, L.C. Rietveld, E.R. Cornelissen, Forward osmosis for application in wastewater treatment: a review, Water Res., 58 (2014) 179–197.
  23. Z.W. Wang, J.X. Tang, C.W. Zhu, Y. Dong, Q.Y. Wang, Z.C. Wu, Chemical cleaning protocols for thin film composite (TFC) polyamide forward osmosis membranes used for municipal wastewater treatment, J. Membr. Sci., 475 (2015) 184–192.
  24. Z.W. Wang, J.J. Zheng, J.X. Tang, X.H. Wang, Z.C. Wu, A pilotscale forward osmosis membrane system for concentrating lowstrength municipal wastewater: performance and implications, Sci. Rep., 6 (2016), https://doi.org/10.1038/srep21653.
  25. S. Phuntsho, F. Lotfi, S.K. Hong, D.L. Shaffer, M. Elimelech, H.K. Shon, Membrane scaling and flux decline during fertiliserdrawn forward osmosis desalination of brackish groundwater, Water Res., 57 (2014) 172–182.
  26. J.L. Soler-Cabezas, J.A. Mendoza-Roca, M.C. Vincent- Vela, M.J. Luján-Facundo, L. Pastor-Alcañiz, Simultaneous concentration of nutrients from anaerobically digested sludge centrate and pre-treatment of industrial effluents by forward osmosis, Sep. Purif. Technol., 193 (2018) 289–296.
  27. D.L. Shaffer, J.R. Werber, H. Jaramillo, S.H. Lin, M. Elimelech, Forward osmosis: where are we now?, Desalination, 356 (2015) 271–284.
  28. X.L. Lu, C.H. Boo, J. Ma, M. Elimelech, Bidirectional diffusion of ammonium and sodium cations in forward osmosis: role of membrane active layer surface chemistry and charge, Environ. Sci. Technol., 48 (2014) 14369–14376.
  29. N.T. Hancock, T.Y. Cath, Solute coupled diffusion in osmotically driven membrane processes, Environ. Sci. Technol., 43 (2009) 6769–6775.
  30. Y. Lei, J.C. Remmers, M. Saakes, R.D. van der Weijden, C.J.N. Buisman, Is there a precipitation sequence in municipal wastewater induced by electrolysis?, Environ. Sci. Technol., 52 (2018) 8399–8407.