References

  1. General Statistics Office of Vietnam, 2018.
  2. V.T. Tran, Researching and Applying Advanced Technologies Suitable to Vietnamese Conditions to Treat Environmental Pollution Combined with Waste Utilization from Pig Farms, Report for KC 08.04/11-15 - Institute of Environmental Technology, 2015.
  3. H.D. Bui, T. Hoang, Meat productivity and quality of three breed crossbred broilers Mia - Ho - Luong phuong, J. Sci. Dev., 9 (2011) 941–947.
  4. D.T. Vu, T.C. Lai, V.D. Nguyen, Assessment of animal waste treatment by means of biodigesters on pig farms in the Red River, J. Sci. Dev., 6 (2008) 556–561.
  5. R. Saucedo Terán, C. de la Mora Orozco, I. González Acuña, S. Gómez Rosales, G. Domínguez Araujo, H. Rubio Arias, Removing organic matter and nutrients from swine wastewater after anaerobic–aerobic treatment, Water, 9 (2017) 726, doi: 10.3390/w9100726.
  6. R.Z. Gaur, O. Khoury, M. Zohar, E. Poverenov, R. Darzi, Y. Laor, R. Posmanik, Hydrothermal carbonization of sewage sludge coupled with anaerobic digestion: integrated approach for sludge management and energy recycling, Energy Convers. Manage., 224 (2020) 113353, doi: 10.1016/j.enconman.2020.113353.
  7. H. Yasui, M. Sugimoto, K. Komatsu, R. Goel, Y.Y. Li, T. Noike, An approach for substrate mapping between ASM and ADM1 for sludge digestion, Water Sci. Technol., 54 (2006) 83–92.
  8. H. Siegrist, D. Vogt, J.L. Garcia-Heras, W. Gujer, Mathematical model for meso- and thermophilic anaerobic sewage sludge digestion, Environ. Sci. Technol., 36 (2002) 1113–1123.
  9. J. Rajesh Banu, S. Kaliappan, D. Beck, High rate anaerobic treatment of Sago wastewater using HUASB with PUF as carrier, Int. J. Environ. Sci. Technol., 3 (2006) 69–77.
  10. R. Rajinikanth, R. Ganesh, R. Escudie, I. Mehrotra, P. Kumar, J.V. Thanikal, M. Torrijos, High rate anaerobic filter with floating supports for the treatment of effluents from small-scale agro-food industries, Desal. Water Treat., 4 (2009) 183–190.
  11. A.A. Khan, R.Z. Gaur, V.K. Tyagi, B. Lew, V. Diamantis, A.A. Kazmi, I. Mehrotra, Fecal coliform removal from the effluent of UASB reactor through diffused aeration, Desal. Water Treat., 39 (2012) 41–44.
  12. A. Ali, R. Zahid, A. Ahmad, B. Lew, Sustainable Post Treatment Options of Anaerobic Effluent, R. Chamy, Ed., Biodegradation - Engineering and Technology, InTech, 2013. Available at: https://www.intechopen.com/books/biodegradation-engineer ing-and-technology/sustainable-post-treatment-options-ofanaerobic- effluent
  13. S. Chai, J. Guo, Y. Chai, J. Cai, L. Gao, Anaerobic treatment of winery wastewater in moving bed biofilm reactors, Desal. Water Treat., 52 (2014) 1841–1849.
  14. P. Artiga, M. Carballa, J.M. Garrido, R. Méndez, Treatment of winery wastewaters in a membrane submerged bioreactor, Water Sci. Technol., 56 (2007) 63–69.
  15. A. di Biase, T.R. Devlin, M.S. Kowalski, J.A. Oleszkiewicz, Performance and design considerations for an anaerobic moving bed biofilm reactor treating brewery wastewater: impact of surface area loading rate and temperature, J. Environ. Manage., 216 (2018) 392–398.
  16. S. Wang, N. Chandrasekhara Rao, R. Qiu, R. Moletta, Performance and kinetic evaluation of anaerobic moving bed biofilm reactor for treating milk permeate from dairy industry, Bioresour. Technol., 100 (2009) 5641–5647.
  17. S. Nguyen, Research on Swine Wastewater Treatment by Biological Methods Combined with Membrane Filtration, VNU University of Science, 2016.
  18. D.H.T. Pham, C.V. Le, J.L. Vasel, Simulation of N removal in aquaculture wastewater using moving bed biofilm reactor with modified ASM3, J. Chem., 2 (2013) 206–212.
  19. T.P. Nguyen, Application of GPS-X to simulate the sludge treatment by anaerobic biological methods, J. Water Supply Sewerage, 4 (2012).
  20. T.P. Nguyen, Determine the kinetic parameters of anaerobic digestion combining septic tank sludge and organic waste using GPS-X, Vietnam J. Constr., 6 (2014).
  21. APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, 22nd ed., American Public Health Association/American Water Works Association/Water Environment Federation, New York, NY, 2012.
  22. M. DuBois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric method for determination of sugars and related substances, Anal. Chem., 28 (1956) 350–356.
  23. R.F. Itzhaki, D.M. Gill, A micro-biuret method for estimating proteins, Anal. Biochem., 9 (1964) 401–410.
  24. K. Kida, T. Shigematsu, J. Kijima, M. Numaguchi, Y. Mochinaga, N. Abe, S. Morimura, Influence of Ni2+ and Co2+ on methanogenic activity and the amounts of coenzymes involved in methanogenesis, J. Biosci. Bioeng., 91 (2001) 590–595.
  25. M. Walker, Y. Zhang, S. Heaven, C. Banks, Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes, Bioresour. Technol., 100 (2009) 6339–6346.
  26. D.J. Batstone, J. Keller, I. Angelidaki, S.V. Angelidaki, S.G. Pavlostathis, A. Rozzi, W.T.M. Sanders, H. Siegrist, V. Vavilin, Anaerobic Digestion Model No. 1 (ADM1), IWA, London.
  27. A. Kunz, R. Steinmetz, S. Damasceno, A. Coldebela, Nitrogen removal from swine wastewater by combining treated effluent with raw manure, Sci. Agric., 69 (2012) 352–356.
  28. B. Liu, V.A. Ngo, M. Terashima, H. Yasui, Anaerobic treatment of hydrothermally solubilised sugarcane bagasse and its kinetic modelling, Bioresour. Technol., 234 (2017) 253–263.
  29. N. Van Anh, V. Thi Huyen, L. Van Chie, N. Thi Ha, M. Terashima, H. Yasui, High-rate moving-bed biofilm anaerobic digestion for waste activated sludge treatment, J. Water Environ. Technol., 12 (2014) 501–509.
  30. L. Coyne, C. Benigno, V.N. Giang, L.Q. Huong, W. Kalprividh, P. Padungtod, I. Patrick, P.T. Ngoc, J. Rushton, Exploring the socioeconomic importance of antimicrobial use in the small-scale pig sector in Vietnam, Antibiotics, 9 (2020) 299, https://doi.org/10.3390/antibiotics9060299.
  31. A. Galí, T. Benabdallah, S. Astals, J. Mata-Alvarez, Modified version of ADM1 model for agro-waste application, Bioresour. Technol., 100 (2009) 2783–2790.
  32. J.T. Novak, D.A. Carlson, The kinetics of anaerobic long chain fatty acid degradation, J. Water Pollut. Control Fed., 42 (1970) 1932–1943.
  33. J.L. Garcia-Heras, Reactor Sizing, Process Kinetics and Modelling of Anaerobic Digestion of Complex Waste, International Water Association, London, 2003.
  34. S.G. Pavlostathis, E. Giraldo‐Gomez, Kinetics of anaerobic treatment: a critical review, Crit. Rev. Environ. Control., 21 (1991) 411–490.
  35. I.R. Ramsay, Modelling and Control of High-Rate Anaerobic Wastewater Treatment System, Ph.D. Thesis, University of Queensland, 1997.
  36. M. Romli, J. Keller, P.L. Lee, P. Greenfield, Model prediction and verification of a two-stage high-rate anaerobic wastewater treatment system subjected to shock loads, Process Saf. Environ. Prot. Trans. Inst. Chem. Eng., Part B, 73 (1995) 151–154.
  37. M. Wichern, T. Gehring, K. Fischer, D. Andrade, M. Lübken, K. Koch, A. Gronauer, H. Horn, Monofermentation of grass silage under mesophilic conditions: measurements and mathematical modeling with ADM 1, Bioresour. Technol., 100 (2009) 1675–1681.
  38. A. Van Ngo, H.T. Nguyen, C. Van Le, R. Goel, M. Terashima, H. Yasui, A dynamic simulation of methane fermentation process receiving heterogeneous food wastes and modelling acidic failure, J. Mater. Cycles Waste Manage., 18 (2016) 239–247.
  39. V.A. Vavilin, L.Y. Lokshina, Modeling of volatile fatty acids degradation kinetics and evaluation of microorganism activity, Bioresour. Technol., 57 (1996) 69–80.
  40. E. Salminen, J. Rintala, L.Y. Lokshina, V.A. Vavilin, Anaerobic batch degradation of solid poultry slaughterhouse waste, Water Sci. Technol., 41 (2000) 33–41.
  41. Z. Gujer, A.J.B. Zehnder, Conversion processes in anaerobic digestion, Water Sci. Technol., 15 (1983) 127–167.