References

  1. R.D.G. Franca, H.M. Pinheiro, M.C.M. van Loosdrecht, N.D. Lourenço, Stability of aerobic granules during long-term bioreactor operation, Biotechnol. Adv., 36 (2018) 228–246.
  2. Z.X. Liang, Q.Q. Tu, X.X. Su, X.Y. Yang, J.Y. Chen, Y. Chen, C.H. Li, H. Li, Q. He, Formation, extracellular polymeric substances and microbial community of aerobic granules enhanced by microbial flocculant compared with polyaluminum chloride, J. Cleaner Prod., 220 (2019) 544–552.
  3. S. Pandey, S. Sarkar, Performance evaluation and substrate removal kinetics of an anaerobic packed-bed biofilm reactor, Int. J. Environ. Res., 13 (2019) 223–233.
  4. V.M. Arellano-Badillo, I. Moreno-Andrade, G. Buitrón, Effect of the organic matter to ammonia ratio on aerobic granulation during 4-chlorophenol degradation in a sequencing batch reactor, Clean-Soil Air Water, 42 (2014) 428–433.
  5. J. Liu, J. Li, X.D. Wang, Q. Zhang, H. Littleton, Rapid aerobic granulation in an SBR treating piggery wastewater by seeding sludge from a municipal WWTP, J. Environ. Sci.-China, 51 (2017) 332–341.
  6. S. Ghosh, S. Chakraborty, Influence of inoculum variation on formation and stability of aerobic granules in oily wastewater treatment, J. Environ. Manage., 248 (2019) 109239.
  7. H.J. Li, Z.Z. Yang, Y. Wang, Y.M. Gu, X. Gao, H. Tian, Comparative study of the treatment performance and microbial diversity of an innovative upflow microaerobic sludge bed bioreactor and an aerobic control system, Environ. Eng. Sci., 32 (2015) 722–729.
  8. J. Zhou, H.Y. Wang, K. Yang, F. Ma, B. Lv, Optimization of operation conditions for preventing sludge bulking and enhancing the stability of aerobic granular sludge in sequencing batch reactors, Water Sci. Technol., 70 (2014) 1519–1525.
  9. Y.J. Liu, Z. Liu, F. Wang, Y.P. Chen, P. Kuschk, X.C. Wang, Regulation of aerobic granular sludge reformulation after granular sludge broken: effect of poly aluminum chloride (PAC), Bioresour. Technol., 158 (2014) 201–208.
  10. X.J. Yuan, D.W. Gao, Effect of dissolved oxygen on nitrogen removal and process control in aerobic granular sludge reactor, J. Hazard. Mater., 178 (2010) 1041–1045.
  11. R.M.L.D. Rathnayake, M. Oshiki, S. Ishii, T. Segawa, H. Satoh, S. Okabe, Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules, Bioresour. Technol., 197 (2015) 15–22.
  12. Z.W. Wang, M.C.M. van Loosdrecht, P.E. Saikaly, Gradual adaptation to salt and dissolved oxygen: Strategies to minimize adverse effect of salinity on aerobic granular sludge, Water Res., 124 (2017) 702–712.
  13. L.L. Wan, L. Cao, X.Y. Cao, Y.Y. Zhou, C.L. Song, Optimized parameters and mechanisms for simultaneous nitrogen and phosphorus removal in stormwater biofilters: a pilot study, Environ. Eng. Sci., 36 (2019) 324–330.
  14. A. Babaei, M.R. Mehrnia, J. Shayegan, M.-H. Sarrafzadeh, E. Amini, Evaluation of nutrient removal and biomass production through mixotrophic, heterotrophic, and photoautotrophic cultivation of chlorella in nitrate and ammonium wastewater, Int. J. Environ. Res., 12 (2018) 167–178.
  15. M. Carvalheira, A. Oehmen, G. Carvalho, M. Eusébio, M.A.M. Reis, The impact of aeration on the competition between polyphosphate accumulating organisms and glycogen accumulating organisms, Water Res., 66 (2014) 296–307.
  16. P. Jiang, M.K. Stenstrom, Oxygen transfer parameter estimation: impact of methodology, J. Environ. Eng.-ASCE, 138 (2012) 137–142.
  17. S. Krause, P. Cornel, M. Wagner, Comparison of different oxygen transfer testing procedures in full-scale membrane bioreactors, Water Sci. Technol., 47 (2003) 169–176.
  18. J. Henriques, J. Catarino, Sustainable value — an energy efficiency indicator in wastewater treatment plants, J. Cleaner Prod., 142 (2017) 323–330.
  19. H.T. Fan, L. Qi, G.Q. Liu, Y.K. Zhang, Q. Fan, H.C. Wang, Aeration optimization through operation at low dissolved oxygen concentrations: evaluation of oxygen mass transfer dynamics in different activated sludge systems, J. Environ. Sci. (China), 55 (2017) 224–235.
  20. A.A. Van de Graaf, P. de Bruijn, L.A. Robertson, M.S.M. Jetten, J.G. Kuenen, Autotrophic growth of anaerobic ammoniumoxidizing micro-organisms in a fluidized bed reactor, Microbiology, 142 (1996) 2187–2196.
  21. F.H. Cui, S.Y. Park, M. Kim, Characteristics of aerobic granulation at mesophilic temperatures in wastewater treatment, Bioresour. Technol., 151 (2014) 78–84.
  22. APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington, 2005.
  23. S.S. Adav, D.-J. Lee, Extraction of extracellular polymeric substances from aerobic granule with compact interior structure, J. Hazard. Mater., 154 (2008) 1120–1126.
  24. A.R. Badireddy, S. Chellam, P.L. Gassman, M.H. Engelhard, A.S. Lea, K.M. Rosso, Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions, Water Res., 44 (2010) 4505–4516.
  25. J. Wagner, L.B. Guimarães, T.R.V. Akaboci, R.H.R. Costa, Aerobic granular sludge technology and nitrogen removal for domestic wastewater treatment, Water Sci. Technol., 71 (2015) 1040–1046.
  26. C. Kunacheva, D.C. Stuckey, Analytical methods for soluble microbial products (SMP) and extracellular polymers (ECP) in wastewater treatment systems: a review, Water Res., 61 (2014) 1–18.
  27. J.S. Cech, P. Hartman, Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems, Water Res., 27 (1993) 1219–1225.
  28. Y. Min, Y.L. Sun, X.C. Zheng, P.F. Li, Denitrification efficiency and techno-economic analysis of different exotic additional carbon source, Water Wastewater Eng.-China, 36 (2010) 125–128.
  29. M.K. de Kreuk, J.J. Heijnen, M.C.M. van Loosdrecht, Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge, Biotechnol. Bioeng., 90 (2005) 761–769.
  30. S. Lochmatter, G. Gonzalez-Gil, C. Holliger, Optimized aeration strategies for nitrogen and phosphorus removal with aerobic granular sludge, Water Res., 47 (2013) 6187–6197.
  31. Y. Liu, J.-H. Tay, State of the art of biogranulation technology for wastewater treatment, Biotechnol. Adv., 22 (2004) 533–536.
  32. D.-J. Lee, Y.-Y. Chen, K.-Y. Show, C.-G. Whiteley, J.-H. Tay, Advances in aerobic granule formation and granule stability in the course of storage and reactor operation, Biotechnol. Adv., 28 (2010) 919–934.
  33. H.-H. Chou, J.-S. Huang, C.-W. Tsao, Y.-C. Lu, Comparative influential effects of mass transfer resistance in acetate-fed and glucose-fed sequential aerobic sludge blanket reactors, Chem. Eng. J., 174 (2011) 182–189.
  34. J.-S. Huang, C.-W. Tsao, Y.-C. Lu, H.-H. Chou, Role of mass transfer in overall substrate removal rate in a sequential aerobic sludge blanket reactor treating a non-inhibitory substrate, Water Res., 45 (2011) 4562–4570.
  35. C.-J. Tang, P. Zheng, T.-T. Chen, J.-Q. Zhang, Q. Mahmood, S. Ding, X.-G. Chen, J.-W. Chen, D.-T. Wu, Enhanced nitrogen removal from pharmaceutical wastewater using SBAANAMMOX process, Water Res., 45 (2011) 201–210.
  36. W.R. Abma, C.E. Schultz, J.W. Mulde, W.R.L. van der Star, M. Strous, T. Tokutomi, M.C.M. van Loosdrecht, Full-scale granular sludge anammox process, Water Sci. Technol., 55 (2007) 27–33.
  37. J. Tao, L. Qin, X.Y. Liu, B.L. Li, J.N. Chen, J. You, Y.T. Shen, X.G. Chen, Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism, Bioresour. Technol., 236 (2017) 60–67.
  38. A. Cydzik-Kwiatkowska, I. Wojnowska-Baryła, Nitrifying granules cultivation in a sequencing batch reactor at a low organics-to-total nitrogen ratio in wastewater, Folia Microbiol., 56 (2011) 201–208.
  39. Y.-Q. Liu, J.-H. Tay, Characteristics and stability of aerobic granules cultivated with different starvation time, Appl. Microbiol. Biotechnol., 75 (2007) 205–210.
  40. Y Jiang, Y. Shang, H. Wang, K. Yang, Rapid formation and pollutant removal ability of aerobic granules in a sequencing batch airlift reactor at low temperature, Environ. Technol., 37 (2016) 3078–3087.
  41. L.L. Zhang, X.X. Feng, N.W. Zhu, J.M. Chen, Role of extracellular protein in the formation and stability of aerobic granules, Enzyme Microb. Technol., 41 (2007) 551–557.
  42. K.-Z. Su, H.-Q. Yu, Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean processing wastewater, Environ. Sci. Technol., 39 (2005) 2818–2827.
  43. Y. Zhou, A. Oehmen, M. Lim, V. Vadivelu, W.J. Ng, The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants, Water Res., 45 (2011) 4672–4682.
  44. Z.P. Wang, L.L. Liu, J. Yao, W.M. Cai, Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors, Chemosphere, 63 (2006) 1728–1735.
  45. S. Longo, B.M. d’Antoni, M. Bongards, A. Chaparrod, A. Cronrath, F. Fatone, J.M. Lema, M. Mauricio-Iglesias, A. Soares, A. Hospido, Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement, Appl. Energy, 179 (2016) 1251–1268.