References
- G.Y. Liu, M. Casazza, Y. Hao, Y. Zhang, S. Ulgiati, Emergy
analysis of urban domestic water metabolism: a case study in
Beijing (China), J. Cleaner Prod., 234 (2019) 714–724.
- G.B. Chen, T. Wang, J. Zhang, P. Liu, H.J. Sun, X.D. Zhuang,
M.W. Chen, X.L. Feng, Accelerated hydrogen evolution
kinetics on NiFe‐layered double hydroxide electrocatalysts by
tailoring water dissociation active sites, Adv. Mater., 30 (2018)
1706279, https://doi.org/10.1002/adma.201706279.
- N.S. Alatawi, N.H. Elsayed, W.S. Mohamed, Evaluation of
modified chitosan nanoparticles as sorbent for chromium(VI)
ions from polluted water, Desal. Water Treat., 118 (2018)163–171.
- E. Eskandari, M. Kosari, M.H.D.A. Farahani, N.D. Khiavi,
M. Saeedikhani, R. Katal, M. Zarinejad, A review on polyanilinebased
materials applications in heavy metals removal and
catalytic processes, Sep. Purif. Technol., 231 (2020) 115901,
https://doi.org/10.1016/j.seppur.2019.115901.
- M. Jain, M. Yadav, T. Kohout, M. Lahtinen, V.K. Garg,
M. Sillanpää, Development of iron oxide/activated carbon
nanoparticle composite for the removal of Cr(VI), Cu(II) and
Cd(II) ions from aqueous solution, Water Resour. Ind., 20 (2018)
54–74.
- N. Abdullah, N.W. Yusof, W.J. Lau, J. Jaafar, A.F. Ismail, Recent
trends of heavy metal removal from water/wastewater by
membrane technologies, J. Ind. Eng. Chem., 76 (2019) 17–38.
- A.S. Adeleye, J.R. Conway, T. Perez, P. Rutten, A.A. Keller,
Influence of extracellular polymeric substances on the longterm
fate, dissolution, and speciation of copper-based nanoparticles,
Environ. Sci. Technol., 48 (2014) 12561–12568.
- H. Chen, J.X. Li, D.D. Shao, X.M. Ren, X.K. Wang, Poly(acrylic
acid) grafted multi-walled carbon nanotubes by plasma
techniques for Co(II) removal from aqueous solution, Chem.
Eng. J., 210 (2012) 475–481.
- K.K. Yadav, J.K. Singh, N. Gupta, V. Kumar, A review of
nanobioremediation technologies for environmental cleanup:
a novel biological approach, J. Mater. Environ. Sci., 8 (2017)
740–757.
- S. Sarode, P. Upadhyay, M.A. Khosa, T. Mak, A. Shakir,
S. Song, A. Ullah, Overview of wastewater treatment methods
with special focus on biopolymer chitin-chitosan, Int. J. Biol.
Macromol., 121 (2019) 1086–1100.
- J.F. Li, L.F. Chen, Z.Y. Meng, G.F. Dou, Development of a mass
spectrometry method for the characterization of a series of
chitosan, Int. J. Biol. Macromol., 121 (2019) 89–96.
- G. Kravanja, M. Primožič, Ž. Knez, M. Leitgeb, Chitosan-based
(nano)materials for novel biomedical applications, Molecules,
24 (2019) 1960–1973.
- J.L. Wang, C. Chen, Chitosan-based biosorbents: modification
and application for biosorption of heavy metals and radionuclides,
Bioresour. Technol., 160 (2014) 129–141.
- W. Liu, G. Speranza, Functionalization of carbon nanomaterials
for biomedical applications, J. Carbon Res., 5 (2019) 72–85.
- U. Khan, K. Ryan, W.J. Blau, J.N. Coleman, The effect of solvent
choice on the mechanical properties of carbon nanotube–
polymer composites, Compos. Sci. Technol., 67 (2017) 3158–3167.
- H.Q. Li, S.I. Song, G.Y. Song, I. Kim, Non-covalently
functionalized carbon nanostructures for synthesizing carbonbased
hybrid nanomaterials, J. Nanosci. Nanotechnol., 14 (2014)
1425–1440.
- C. Kingston, R. Zepp, A. Andrady, D. Boverhof, R. Fehir,
D. Hawkins, J. Roberts, P. Sayre, B. Shelton, Y. Sultan, V. Vejins,
W. Wohlleben, Release characteristics of selected carbon
nanotube polymer composites, Carbon, 48 (2014) 33–57.
- P. Liu, Modifications of carbon nanotubes with polymers,
Eur. Polym. J., 41 (2005) 2693–2703.
- K. Kerdnawee, C. Termvidchakorn, P. Yaisanga, J. Pakchamsai,
C. Chookiat, A. Eiad-ua, W. Wongwiriyapan, W. Chaiwat,
S. Ratchahat, K. Faungnawakij, K. Suttiponparnit, T. Charinpanitkul,
Present advancement in production of carbon
nanotubes and their derivatives from industrial waste with
promising applications, KONA Powder Part. J., 34 (2017) 24–43.
- B.-T. Li, Z. Chen, W.-L. Wang, Y.-X. Sun, T.-H. Zhou, A. Li,
Q.-Y. Wu, H.-Y. Hu, Adsorption of isothiazolone biocides in
textile reverse osmosis concentrate by powdered activated
carbon, Water, 10 (2018) 532–544.
- S.J. Zhang, T. Shao, H. Selcen Kose, T. Karanfil, Adsorption
kinetics of aromatic compounds on carbon nanotubes and
activated carbons, Environ. Toxicol. Chem., 31 (2012) 79–85.
- S. Goyanes, G.R. Rubiolo, A. Salazar, A. Jimeno, M.A. Corcuera,
I. Mondragon, Carboxylation treatment of multi-walled carbon
nanotubes monitored by infrared and ultraviolet spectroscopies
and scanning probe microscopy, Diamond Relat. Mater.,
16 (2007) 412–417.
- H.B. Abeer Abdulaziz, Preparation, characterization and
antibacterial activity of chitosan/carbon nanotube nanocomposites,
Ind. J. Sci. Technol., 12 (2019) 1–7.
- J.M. Ngoy, N. Wagner, L. Riboldi, O. Bolland, A CO2 capture
technology using multi-walled carbon nanotubes with polyaspartamide
surfactant, Energy Procedia, 63 (2014) 2230–2248.
- F.S. Su, C.Y. Lu, H.-S. Chen, Adsorption, desorption, and
thermodynamic studies of CO2 with high-amine-loaded
multi-walled carbon nanotubes, Langmuir, 27 (2011) 8090–8098.
- S. Costa, E. Borowiak-Palen, M. Kruszyńska, A. Bachmatiuk,
R.J. Kaleńczuk, Characterization of carbon nanotubes by
Raman spectroscopy, Mater. Sci.-Poland, 26 (2008) 433–441.
- R. Sethi, A.R. Barron, Characterization of Single-Walled
Carbon Nanotubes by Raman Spectroscopy, Open Stax-CNX,
2009.
- D.A. Dzombak, F.M.M. Morel, Surface Complexation
Modeling: Hydrous Ferric Oxide, Wiley, New York, NY, 2009.
- K. Müller, E. Bugnicourt. M. Latorre, M. Jorda, Y.E. Sanz,
J.M. Lagaron, O. Miesbauer, A. Bianchin, S. Hankin, U. Bölz,
G. Pérez, M. Jesdinszki, M. Lindner, Z. Scheuerer, S. Castelló,
M. Schmid, Review on the processing and properties of
polymer nanocomposites and nanocoatings and their
applications in the packaging, automotive and solar energy
fields, Nanomaterials (Basel), 7 (2017) 74–85.
- S. Rengaraj, S.-H. Moon, Kinetics of adsorption of Co(II)
removal from water and wastewater by ion exchange
resins, Water Res., 36 (2002) 1783–1793.
- A.S. Ayangbenro, O.O. Babalola, A new strategy for heavy
metal polluted environments: a review of microbial biosorbents,
Int. J. Environ. Res. Public Health, 14 (2017) 94–116.
- Y.-H. Li, S.-G. Wang, J.Q. Wei, X.F. Zhang, C.L. Xu, Z.K. Luan,
D.H. Wu, B.Q. Wei, Lead adsorption on carbon nanotubes,
Chem. Phys. Lett., 357 (2002) 263–266.
- S.A. Dastgheib, D.A. Rockstraw, A systematic study and
proposed model of the adsorption of binary metal ion solutes
in aqueous solution onto activated carbon produced from
pecan shells, Carbon, 40 (2002) 1853–1861.
- Z. Reddad, C. Gerente, Y. Andres, P. Le Cloirec, Adsorption
of several metal ions onto a low-cost biosorbent: kinetic and
equilibrium studies, Environ. Sci. Technol., 36 (2002) 2067–2073.
- I.D. Atanassova, Adsorption and desorption of Cu at high
equilibrium concentrations by soil and clay samples from
Bulgaria, Environ. Pollut., 87 (1995) 17–21.
- Y. Yin, J. Hu, J.L. Wang, Removal of Sr2+, Co2+, and Cs+ from
aqueous solution by immobilized Saccharomyces cerevisiae with magnetic chitosan beads, Environ. Prog. Sustainable
Energy, 36 (2017) 989–996.
- A.A. Farghali, H.A. Abdel Tawab, S.A. Abdel Moaty, R. Khaled,
Functionalization of acidified multi-walled carbon nanotubes
for removal of heavy metals in aqueous solutions, J. Nanostruct.
Chem., 7 (2017) 101–111.