References

  1. G.Y. Liu, M. Casazza, Y. Hao, Y. Zhang, S. Ulgiati, Emergy analysis of urban domestic water metabolism: a case study in Beijing (China), J. Cleaner Prod., 234 (2019) 714–724.
  2. G.B. Chen, T. Wang, J. Zhang, P. Liu, H.J. Sun, X.D. Zhuang, M.W. Chen, X.L. Feng, Accelerated hydrogen evolution kinetics on NiFe‐layered double hydroxide electrocatalysts by tailoring water dissociation active sites, Adv. Mater., 30 (2018) 1706279, https://doi.org/10.1002/adma.201706279.
  3. N.S. Alatawi, N.H. Elsayed, W.S. Mohamed, Evaluation of modified chitosan nanoparticles as sorbent for chromium(VI) ions from polluted water, Desal. Water Treat., 118 (2018)163–171.
  4. E. Eskandari, M. Kosari, M.H.D.A. Farahani, N.D. Khiavi, M. Saeedikhani, R. Katal, M. Zarinejad, A review on polyanilinebased materials applications in heavy metals removal and catalytic processes, Sep. Purif. Technol., 231 (2020) 115901, https://doi.org/10.1016/j.seppur.2019.115901.
  5. M. Jain, M. Yadav, T. Kohout, M. Lahtinen, V.K. Garg, M. Sillanpää, Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution, Water Resour. Ind., 20 (2018) 54–74.
  6. N. Abdullah, N.W. Yusof, W.J. Lau, J. Jaafar, A.F. Ismail, Recent trends of heavy metal removal from water/wastewater by membrane technologies, J. Ind. Eng. Chem., 76 (2019) 17–38.
  7. A.S. Adeleye, J.R. Conway, T. Perez, P. Rutten, A.A. Keller, Influence of extracellular polymeric substances on the longterm fate, dissolution, and speciation of copper-based nanoparticles, Environ. Sci. Technol., 48 (2014) 12561–12568.
  8. H. Chen, J.X. Li, D.D. Shao, X.M. Ren, X.K. Wang, Poly(acrylic acid) grafted multi-walled carbon nanotubes by plasma techniques for Co(II) removal from aqueous solution, Chem. Eng. J., 210 (2012) 475–481.
  9. K.K. Yadav, J.K. Singh, N. Gupta, V. Kumar, A review of nanobioremediation technologies for environmental cleanup: a novel biological approach, J. Mater. Environ. Sci., 8 (2017) 740–757.
  10. S. Sarode, P. Upadhyay, M.A. Khosa, T. Mak, A. Shakir, S. Song, A. Ullah, Overview of wastewater treatment methods with special focus on biopolymer chitin-chitosan, Int. J. Biol. Macromol., 121 (2019) 1086–1100.
  11. J.F. Li, L.F. Chen, Z.Y. Meng, G.F. Dou, Development of a mass spectrometry method for the characterization of a series of chitosan, Int. J. Biol. Macromol., 121 (2019) 89–96.
  12. G. Kravanja, M. Primožič, Ž. Knez, M. Leitgeb, Chitosan-based (nano)materials for novel biomedical applications, Molecules, 24 (2019) 1960–1973.
  13. J.L. Wang, C. Chen, Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides, Bioresour. Technol., 160 (2014) 129–141.
  14. W. Liu, G. Speranza, Functionalization of carbon nanomaterials for biomedical applications, J. Carbon Res., 5 (2019) 72–85.
  15. U. Khan, K. Ryan, W.J. Blau, J.N. Coleman, The effect of solvent choice on the mechanical properties of carbon nanotube– polymer composites, Compos. Sci. Technol., 67 (2017) 3158–3167.
  16. H.Q. Li, S.I. Song, G.Y. Song, I. Kim, Non-covalently functionalized carbon nanostructures for synthesizing carbonbased hybrid nanomaterials, J. Nanosci. Nanotechnol., 14 (2014) 1425–1440.
  17. C. Kingston, R. Zepp, A. Andrady, D. Boverhof, R. Fehir, D. Hawkins, J. Roberts, P. Sayre, B. Shelton, Y. Sultan, V. Vejins, W. Wohlleben, Release characteristics of selected carbon nanotube polymer composites, Carbon, 48 (2014) 33–57.
  18. P. Liu, Modifications of carbon nanotubes with polymers, Eur. Polym. J., 41 (2005) 2693–2703.
  19. K. Kerdnawee, C. Termvidchakorn, P. Yaisanga, J. Pakchamsai, C. Chookiat, A. Eiad-ua, W. Wongwiriyapan, W. Chaiwat, S. Ratchahat, K. Faungnawakij, K. Suttiponparnit, T. Charinpanitkul, Present advancement in production of carbon nanotubes and their derivatives from industrial waste with promising applications, KONA Powder Part. J., 34 (2017) 24–43.
  20. B.-T. Li, Z. Chen, W.-L. Wang, Y.-X. Sun, T.-H. Zhou, A. Li, Q.-Y. Wu, H.-Y. Hu, Adsorption of isothiazolone biocides in textile reverse osmosis concentrate by powdered activated carbon, Water, 10 (2018) 532–544.
  21. S.J. Zhang, T. Shao, H. Selcen Kose, T. Karanfil, Adsorption kinetics of aromatic compounds on carbon nanotubes and activated carbons, Environ. Toxicol. Chem., 31 (2012) 79–85.
  22. S. Goyanes, G.R. Rubiolo, A. Salazar, A. Jimeno, M.A. Corcuera, I. Mondragon, Carboxylation treatment of multi-walled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy, Diamond Relat. Mater., 16 (2007) 412–417.
  23. H.B. Abeer Abdulaziz, Preparation, characterization and antibacterial activity of chitosan/carbon nanotube nanocomposites, Ind. J. Sci. Technol., 12 (2019) 1–7.
  24. J.M. Ngoy, N. Wagner, L. Riboldi, O. Bolland, A CO2 capture technology using multi-walled carbon nanotubes with polyaspartamide surfactant, Energy Procedia, 63 (2014) 2230–2248.
  25. F.S. Su, C.Y. Lu, H.-S. Chen, Adsorption, desorption, and thermodynamic studies of CO2 with high-amine-loaded multi-walled carbon nanotubes, Langmuir, 27 (2011) 8090–8098.
  26. S. Costa, E. Borowiak-Palen, M. Kruszyńska, A. Bachmatiuk, R.J. Kaleńczuk, Characterization of carbon nanotubes by Raman spectroscopy, Mater. Sci.-Poland, 26 (2008) 433–441.
  27. R. Sethi, A.R. Barron, Characterization of Single-Walled Carbon Nanotubes by Raman Spectroscopy, Open Stax-CNX, 2009.
  28. D.A. Dzombak, F.M.M. Morel, Surface Complexation Modeling: Hydrous Ferric Oxide, Wiley, New York, NY, 2009.
  29. K. Müller, E. Bugnicourt. M. Latorre, M. Jorda, Y.E. Sanz, J.M. Lagaron, O. Miesbauer, A. Bianchin, S. Hankin, U. Bölz, G. Pérez, M. Jesdinszki, M. Lindner, Z. Scheuerer, S. Castelló, M. Schmid, Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields, Nanomaterials (Basel), 7 (2017) 74–85.
  30. S. Rengaraj, S.-H. Moon, Kinetics of adsorption of Co(II) removal from water and wastewater by ion exchange resins, Water Res., 36 (2002) 1783–1793.
  31. A.S. Ayangbenro, O.O. Babalola, A new strategy for heavy metal polluted environments: a review of microbial biosorbents, Int. J. Environ. Res. Public Health, 14 (2017) 94–116.
  32. Y.-H. Li, S.-G. Wang, J.Q. Wei, X.F. Zhang, C.L. Xu, Z.K. Luan, D.H. Wu, B.Q. Wei, Lead adsorption on carbon nanotubes, Chem. Phys. Lett., 357 (2002) 263–266.
  33. S.A. Dastgheib, D.A. Rockstraw, A systematic study and proposed model of the adsorption of binary metal ion solutes in aqueous solution onto activated carbon produced from pecan shells, Carbon, 40 (2002) 1853–1861.
  34. Z. Reddad, C. Gerente, Y. Andres, P. Le Cloirec, Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies, Environ. Sci. Technol., 36 (2002) 2067–2073.
  35. I.D. Atanassova, Adsorption and desorption of Cu at high equilibrium concentrations by soil and clay samples from Bulgaria, Environ. Pollut., 87 (1995) 17–21.
  36. Y. Yin, J. Hu, J.L. Wang, Removal of Sr2+, Co2+, and Cs+ from aqueous solution by immobilized Saccharomyces cerevisiae with magnetic chitosan beads, Environ. Prog. Sustainable Energy, 36 (2017) 989–996.
  37. A.A. Farghali, H.A. Abdel Tawab, S.A. Abdel Moaty, R. Khaled, Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions, J. Nanostruct. Chem., 7 (2017) 101–111.