References
- A. Vengosh, Salinization and saline environment, Treatise
Geochem., 9 (2003) 1–35.
- N. Gaaloul, L. Candela, A. Chebil, A. Soussi, K. Tamoh,
Groundwater flow simulation at the Grombalia phreatic aquifer
(Cap Bon, Northeastern Tunisia), Desal. Water Treat., 52 (2013)
1997–2008.
- N. Mokadem, B. Redhaounia, H. Besser, Y. Ayadi, F. Khelifi,
A. Hamad, Y. Hamed, S. Bouri, Impact of climate change on
groundwater and the extinction of ancient “Foggara” and
springs systems in arid lands in North Africa: a case study in
Gafsa basin (Central of Tunisia), Euro-Mediterr. J. Environ.
Integr., 3 (2018) 28.
- N. Baghdadi, M. Zribi, Characterization of Soil Surface
Properties Using Radar Remote Sensing. In: Land Surface
Remote Sensing in Continental Hydrology, Elsevier, New York,
2016, pp. 1–39.
- B.C. Richter, C.W. Kreitler, Geochemical Techniques for
Identifying Sources of Ground-Water Salinization, CRC Press,
1993, p. 272.
- K. Brindha, M. Schneider, Impact of Urbanization on
Groundwater
Quality, GIS and Geostatistical Techniques for
Groundwater Science, 2019, pp. 179–196.
- J.L. Osiensky, Time series electrical potential field measurements
for early detection of groundwater contamination, J. Environ.
Sci. Health Part A, 30 (1995) 1601–1626.
- G.W. Hohmann, Numerical Modeling for Electromagnetic
Methods of Geophysics, In: Electromagnetic Methods in
Applied Geophysics, 1988, pp. 312–363.
- R. Aghlmand, A. Abbasi, Application of MODFLOW with
boundary conditions analyses based on limited available
observations: a case study of Birjand Plain in East Iran, Water,
11 (2019) 1904.
- G. Sindhu, Effect of pumping on groundwater levels: a case
study, J. Inst. Eng. (India) Ser. A, 99 (2013) 369–437.
- A.N. Khondaker, R.I. Al‐Layla, T. Husain, Groundwater
contamination studies ‐ the state‐of‐the‐art, Crit. Rev. Environ.
Sci. Technol., 20 (1990) 231–256.
- E.S. Bair, A.E. Springer, G.S. Roadcap, Delineation of traveltimerelated
capture areas of wells using analytical flow models
and particle-tracking analysis, Groundwater, 29 (1991) 387–397.
- N.Z. Sun, Mathematical Modeling of Groundwater Pollution,
Springer, New York, 1996.
- P.K. Majumdar, N.C. Ghosh, B. Chakravorty, Analysis of
arsenic-contaminated groundwater domain in the Nadia
district of West Bengal (India), Hydrol. Sci. J., 4 (2002) S55–S66.
- J.A. Izbicki, C.L. Stamos, T. Nishikawa, P. Martin, Comparison
of ground-water flow model particle-tracking results and
isotopic data in the Mojave River ground-water basin, southern
California, USA, J. Hydrol., 292 (2004) 30–47.
- G. Kourakos, T. Harter, Vectorized simulation of groundwater
flow and streamline transport, Environ. Modell. Software,
52 (2014) 207–221.
- E.S. Bair, Applied Groundwater Modeling-Simulation of
Flow and Advective Transport, Groundwater, 54 (2016) 756–757.
- K.M. Ibrahim, A.R. El-Naqa, Inverse geochemical modeling
of groundwater salinization in Azraq Basin, Jordan, Arab.
J. Geosci., 11 (2018) 237.
- M.A. Sbai, A practical grid-based alternative method to
advective particle tracking, Groundwater, (2018), doi:10.1111/
gwat.12646.
- X. Wu, J. Xia, C. Zhan, R. Jia, Y. Li, Y. Qiao, L. Zou, Modeling
soil salinization at the downstream of a lowland reservoir,
Hydrol. Res., (2019), doi:10.2166/nh.2019.041.
- Y. Bachmat, J. Bredehoeft, B. Andrews, D. Holtz, S. Sebastian,
Groundwater Management: the Use of Numerical Models,
Water Resources, Monograph: American Geophysical Union,
1980, p. 111.
- L.M. Abriola, Modeling contaminant transport in subsurface -
an interdisciplinary challenge, Rev. Geophys., 25 (1987) 125.
- L.M. Abriola, Modeling multiphase migration of organic
chemicals in groundwater systems-a review and assessment,
Environ. Health Perspect., 83 (1989) 117–143.
- A.W. Harbaugh, MODFLOW-2005, the U.S. Geological Survey
Modular Ground-Water Model—The Ground-Water Flow
Process, U.S. Geological Survey Techniques and Methods
6–A16, Reston, Virginia, USA, 2005.
- C. Muffels, L. Scantlebury, X. Wang, M.J. Tonkin, C. Neville,
M. Ramadhan, J.R. Craig, User’s Guide for Mod-PATH3DU,
A Groundwater Path and Travel-Time Simulator, S.S. Papadopulos
& Associates, Bethesda, MD, 2018.
- M. Devi Nowbuth, P. Rambhojun, B. Umrikar, Numerical
groundwater flow and contaminant transport modelling of
the Southern Aquifer, Mauritius, Earth Sci. India, 5 (2012) 79–91.
- H. Banejad, H. Mohebzadeh, M.H. Ghobadi, M. Heydari,
Numerical simulation of groundwater flow and contamination
transport in Nahavand Plain aquifer, west of Iran, J. Geol. Soc.
India, 83 (2014) 83–92.
- A.K. Chaudhry, K. Kamal, M.A. Alam, Spatial distribution
of physico-chemical parameters for groundwater quality
evaluation in a part of Satluj River Basin, India, Water Supply,
19 (2019) 1480–1490.
- M. Mirzavand, H. Ghasemieh, S.J. Sadatinejad, R. Bagheri,
An overview on source, mechanism and investigation
approaches in groundwater salinization studies, Int. J. Environ.
Sci. Technol., (2020), doi:10.1007/s13762–020–02647–7.
- S. Sharma, J. Kaur, A.K. Nagpal, I. Kaur, Quantitative
assessment of possible human health risk associated with
consumption of arsenic-contaminated groundwater and wheat
grains from Ropar Wetland and its environs, Environ. Monit.
Assess., 188 (2016) 506.
- Department of Science, Technology, and Environment (DSTE),
Action Plan of Clean River Sutlej. Directorate of Environment
and Climate Change: Punjab, India, 2019.
- A. Sharma, In Ropar, Illegal Mining Takes Toll on
Groundwater, (2019). Available at: https://www.tribuneindia.
com/news/punjab/in-ropar-illegal-mining-takes-toll-ongroundwater/
802078.html (Accessed: August 2020).
- S. Dutta, The Degrading Water Quality of Sutlej, (2017).
Available at: http://swachhindia.ndtv.com/disposal-wastegrossly-
pollutingindustries-punjab-threaten-widely-usedrivers-
state-12183/ (Accessed: August 2020).
- P. Virk, N. Ghosh, K.P. Singh, Some trace elements
investigation in groundwater around industrial belt of Ropar
Block, Rupnagar District, Punjab, India, J. Ind. Pollut. Control,
26 (2010) 149–154.
- Central Water Commission (CWC), Status of Trace and Toxic
Metals in Indian Rivers, Ministry of Water Resources, India,
2018.
- B. Singh, Regional Geochemical Mapping in Toposheet no
53A/4 district Nawanshahr and Hoshiarpur, Punjab, Geological
Survey of India, New Delhi, Report No. NRO-21274, 2002.
- A.K. Chaudhry, K. Kamal, M.A. Alam, Mapping of groundwater
potential zones using the fuzzy analytic hierarchy process
and geospatial technique, Geocarto Int., (2019) 1–22.
- A.K. Chaudhry, K. Kamal, M.A. Alam, Groundwater
contamination characterization using multivariate statistical
analysis and geostatistical method, Water Supply, 19 (2019)
2309–2322.
- Central Groundwater Board (CGWB), Aquifer Mapping and
Management Plan, Ropar District Punjab, Ministry of Water
Resources, India, 2017.
- V. Bedekar, E.D. Morway, C.D. Langevin, M. Tonkin, MT3DUSGS
Version 1.0.0: Groundwater Solute Transport Simulator
for MODFLOW, U.S. Geological Survey, Reston: Virginia, USA,
2016. doi: http://dx.doi.org/10.5066/F75T3HKD.
- D.W. Pollock, Semi-analytical computation of path lines for
finite-difference models, Groundwater, 26 (1988) 743–750.
- D.W. Pollock, User Guide to MODPATH Version 7 – A Particle
Tracking Model for MODFLOW, U.S. Geological Survey
Open-File Report 2016–1086, 2016, p. 35.
- N. Lu, A semianalytical method of path line computation for
transient finite-difference groundwater flow models, Water
Resour. Res., 30 (1994) 2449–2459.
- D.J. Ackerman, J.P. Rousseau, G.W. Rattray, J.C. Fisher,
Steady-State and Transient Models of Groundwater Flow and
Advective Transport, Eastern Snake River Plain aquifer, Idaho
National Laboratory and vicinity, U.S. Geological Survey
Scientific Investigations Report 2010–5123, Idaho, 2010, p. 220.
- Central Water Commission (CWC), Sub-basin study under
NWM- Appendix 2 Lower Sutlej Sub Basin, Ministry of Water
Resources, India, 2011.
- P. Sahu, H.A. Michael, C.I. Voss, P.K. Sikdar, Impacts on
groundwater recharge areas of megacity pumping: analysis
of potential contamination of Kolkata, India, water supply,
Hydrol. Sci. J., 58 (2013) 1340–1360.
- M. Fioreze, M.A. Mancuso, MODFLOW and MODPATH
for hydrodynamic simulation of porous media in horizontal
subsurface flow constructed wetlands: a tool for design
criteria, Ecol. Eng., 130 (2019) 45–52.
- M.C. Hill, Water-Resources Investigations Report 90–4048, In:
Preconditioned Conjugate-Gradient 2 (PCG2), A Computer
Program for Solving Ground-Water Flow Equations, USGS,
1990, p. 31.
- B.F. Des Tombe, M. Bakker, F. Schaars, K.-J. van der Made,
Estimating travel time in bank filtration systems from a
numerical model based on DTS measurements, Groundwater,
56 (2017) 288–299.
- J.E. Doherty, M.N. Fienen, R.J. Hunt, Approaches to Highly
Parameterized Inversion: pilot-Point Theory, Guidelines,
and Research Directions, U.S. Geological Survey Scientific
Investigations Report 2010–5168, 2010, p. 36.
- M.J. Knowling, A.D. Werner, D. Herckenrath, Quantifying
climate and pumping contributions to aquifer depletion using
a highly parameterised groundwater model: Uley South Basin
(South Australia), J. Hydrol., 523 (2015) 515–530.
- W.W. Woessner, M.P. Anderson, Selecting Calibration Values
and Formulating Calibration Targets for Groundwater
Flow Simulations, IAHS Publ. 195: Columbus, Ohio, USA, 1992,
pp. 199–212.
- M.C. Hill, C.R. Tiedeman, Effective Groundwater Model
Calibration–With Analysis of Data, Sensitivities, Predictions,
and Uncertainty, John Wiley & Sons, Inc., Hoboken, N.J.,
2007, p. 455.
- C. Zheng, M. Hill, G. Cao, R. Ma, MT3DMS: Model use,
calibration, and validation, Trans. ASABE, 55 (2012) 1549–1559.
- P.A. Domenico, F. Schwartz, Physical and Chemical Hydrogeology,
Wiley, New York, 1998.
- G. Drličková, M. Vaculík, P. Matejkovič, A. Lux, Bioavailability
and toxicity of arsenic in maize grown in contaminated soils,
Bull. Environ. Contam. Toxicol., 91 (2013) 235–239.
- S. Sharma, I. Kaur, A.K. Nagpal, Estimation of arsenic,
manganese and iron in mustard seeds, maize grains,
groundwater and associated human health risks in Ropar
wetland, Punjab, India, and its adjoining areas, Environ.
Monit. Assess., 190 (2018) 384–399.
- J.J. Alava, W.W.L. Cheung, P.S. Ross, U.R. Sumaila, Climate
change–contaminant interactions in marine food webs: toward
a conceptual framework, Global Change Biol., 23 (2017)
3984–4001.
- C. Su, S. Song, Y. Lu, S. Liu, J.P. Giesy, D. Chen, A. Jenkins,
A.J. Sweetman, B. Yvette, Potential effects of changes in climate
and emissions on distribution and fate of perfluorooctane
sulfonate in the Bohai Rim, China, Sci. Total Environ.,
613 (20180 352–360.
- C.E. Schubert, Groundwater Flow Paths and Travel Time to
Three Small Embayments within the Peconic Estuary, Eastern
Suffolk County, New York, U.S. Geological Survey Open-File
Report 98–4181, 1999.