References

  1. D. Grasso, J.C. Carrington, P. Chheda, B. Kim, Nitrocellulose particles stability: coagulation thermodynamics, Water Res., 29 (1995) 49–59.
  2. M. Raeisi, G.D. Najafpour, Alkaline hydrolysis of waste nitrocellulose for recovery of pure cellulose, Iran. J. Energy Environ., 2 (2011) 221–228.
  3. A.A. Ismail, Y.A. Abdelaziz, L. Giorno, Separation of nitrocellulose using inorganic membrane (MF/NF) separation system, J. Ind. Pollut. Control, 34 (2018) 1998–2007.
  4. B.W. Brodman, M.P. Devin, Microbial attack of NC, J. Appl. Polym. Sci., 26 (1981) 997–1000.
  5. C. Christodoulatos, T.L. Su, A. Koutsospyros, Kinetics of the alkaline hydrolysis of nitrocellulose, Water Environ. Res., 73 (2001) 185–191.
  6. G. El-Diwani, N.N. El-Ibiari, S.I. Hawash, Treatment of hazardous wastewater contaminated by nitrocellulose, J. Hazard. Mater., 167 (2009) 830–834.
  7. M. Barreto-Rodrigues, J.V.B. Souza, E.S. Silva, F.T. Silva, T.C.B. Paiva, Combined photocatalytic and fungal processes for the treatment of nitrocellulose industry wastewater, J. Hazard. Mater., 161 (2009) 1569–1573.
  8. M. Duran, B. Kim, R. Speece, Anaerobic biotransformation of nitrocellulose, Waste Manage., 14 (1994) 481–487.
  9. J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, J. Naja, Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches, Desalination, 404 (2017) 1–21.
  10. S. Sen, A.K. Prajapati, A. Bannatwala, D. Pal, Electrocoagulation treatment of industrial wastewater including textile dyeing effluent – a review, Desal. Water Treat., 161 (2019) 21–34.
  11. I. Kabdaş, I. Arslan-Alaton, T. Ölmez-Hanc, O. Tünay, Electrocoagulation applications for industrial wastewaters: a critical review, Environ. Technol. Rev., 1 (2012) 2–45.
  12. A. El Shahawy, S. Hassan, E.E. Ebrahiem, I. El Kersh, Organic pollutants removal from olive mill wastewater by coagulation and electrocoagulation: application of Box-Behnken design (BBD), Desal. Water Treat., 148 (2019) 102–118.
  13. S.Y. Lee, G.A. Gagnon, Review of the factors relevant to the design and operation of an electrocoagulation system for wastewater treatment, Environ. Rev., 22 (2014) 421–429.
  14. K. Ravikumar, S. Ramalingam, S. Krishnan, K. Balu, Application of response surface methodology to optimize the process variables for Reactive Red and Acid Brown dye removal using a novel adsorbent, Dyes Pigm., 70 (2006) 18–26.
  15. D.C. Montgomery, Design and Analysis of Experiments, 3rd ed., Wiley, New York, NY, 1991.
  16. APHA, AWWA, WPCF, Standard Methods for the Examination of Water and Wastewater, 16th ed., American Public Health Association, American Water Works Association, Water Pollution Control Federation, 1985.
  17. T.M. LaPara, J.E. Alleman, P.G. Pope, Miniaturized closed reflux, colorimetric method for the determination of chemical oxygen demand, Waste Manage., 20 (2000) 295–298.
  18. K.K. Garg, B. Prasad, Development of Box–Behnken design for treatment of terephthalic acid wastewater by electrocoagulation process: optimization of process and analysis of sludge, J. Environ. Chem. Eng., 4 (2016) 178–190.
  19. K.-J. Kim, K. Baek, S. Ji, Y. Cheong, G. Yim, A. Jang, Study on electrocoagulation parameters (current density, pH, and electrode distance) for removal of fluoride from groundwater, Environ. Earth Sci., 75 (2016) 45, doi: 10.1007/s12665-015- 4832-6.
  20. K. Brahmi, W. Bouguerra, B. Hamrouni, E. Elaloui, M. Loungou, Z. Tlili, Investigation of electrocoagulation reactor design parameters effect on the removal of cadmium from synthetic and phosphate industrial wastewater, Arabian J. Chem., 12 (2019) 1848–1859.
  21. S.M. Didar-Ul Islam, Electrocoagulation (EC) technology for wastewater treatment and pollutants removal, Sustainable Water Resour. Manage., 5 (2019) 359–380.
  22. D. Ghernaout, B. Ghernaout, A. Boucherit, M.W. Naceur, A. Khelifa, A. Kellila, Study on mechanism of electrocoagulation with iron electrodes in idealised conditions and electrocoagulation of humic acids solution in batch using aluminum electrodes, Desal. Water Treat., 8 (2009) 91–99.
  23. M. Afsharnia, M. Saeidi, Evaluating the effectiveness of electrocoagulation (EC) process in reducing the COD of simulated urban runoffs, Int. J. Electrochem. Sci., 13 (2018) 5172–5183.
  24. T.S.A. Singh, S.T. Ramesh, An experimental study of CI Reactive Blue 25 removal from aqueous solution by electrocoagulation using aluminum sacrificial electrode: kinetics and influence of parameters on electrocoagulation performance, Desal. Water Treat., 52 (2014) 2634–2642.
  25. S. Damiri, H.R. Pouretedal, A.R. Ashjerdi, Response surface optimization of the purification process of cyclotrimethylenetrinitramine explosive via digestion in binary solvent mixtures of acetone/water, Sep. Sci. Technol., 52 (2017) 487–496.
  26. H.R. Pouretedal, M. Fallahgar, F.S. Pourhasan, M. Nasiri, Taguchi optimization of photodegradation of yellow water of trinitrotoluene production catalyzed by nanoparticles TiO2/N under visible light, Iran. J. Catal., 7 (2017) 317–326.
  27. H.R. Pouretedal, S. Damiri, A. Shahsavan, Modification of RDX and HMX crystals in procedure of solvent/anti-solvent by statistical methods of Taguchi analysis design and MLR technique, Defence Technol., 14 (2018) 59–63.
  28. H.R. Pouretedal, S. Damiri, A.R. Sharifi, Statistical optimization for determination of trace amounts of RDX in matrix of HMX using GC‑ECD, SN Appl. Sci., 1 (2019) 457, doi: 10.1007/ s42452-019-0477-5.