References
- D. Grasso, J.C. Carrington, P. Chheda, B. Kim, Nitrocellulose
particles stability: coagulation thermodynamics, Water Res.,
29 (1995) 49–59.
- M. Raeisi, G.D. Najafpour, Alkaline hydrolysis of waste
nitrocellulose for recovery of pure cellulose, Iran. J. Energy
Environ., 2 (2011) 221–228.
- A.A. Ismail, Y.A. Abdelaziz, L. Giorno, Separation of
nitrocellulose using inorganic membrane (MF/NF) separation
system, J. Ind. Pollut. Control, 34 (2018) 1998–2007.
- B.W. Brodman, M.P. Devin, Microbial attack of NC, J. Appl.
Polym. Sci., 26 (1981) 997–1000.
- C. Christodoulatos, T.L. Su, A. Koutsospyros, Kinetics of the
alkaline hydrolysis of nitrocellulose, Water Environ. Res.,
73 (2001) 185–191.
- G. El-Diwani, N.N. El-Ibiari, S.I. Hawash, Treatment of
hazardous wastewater contaminated by nitrocellulose,
J. Hazard. Mater., 167 (2009) 830–834.
- M. Barreto-Rodrigues, J.V.B. Souza, E.S. Silva, F.T. Silva,
T.C.B. Paiva, Combined photocatalytic and fungal processes
for the treatment of nitrocellulose industry wastewater,
J. Hazard. Mater., 161 (2009) 1569–1573.
- M. Duran, B. Kim, R. Speece, Anaerobic biotransformation of
nitrocellulose, Waste Manage., 14 (1994) 481–487.
- J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial,
P. Drogui, J. Naja, Electrocoagulation process in water
treatment: a review of electrocoagulation modeling
approaches, Desalination, 404 (2017) 1–21.
- S. Sen, A.K. Prajapati, A. Bannatwala, D. Pal, Electrocoagulation
treatment of industrial wastewater including textile dyeing
effluent – a review, Desal. Water Treat., 161 (2019) 21–34.
- I. Kabdaş, I. Arslan-Alaton, T. Ölmez-Hanc, O. Tünay,
Electrocoagulation applications for industrial wastewaters:
a critical review, Environ. Technol. Rev., 1 (2012) 2–45.
- A. El Shahawy, S. Hassan, E.E. Ebrahiem, I. El Kersh, Organic
pollutants removal from olive mill wastewater by coagulation
and electrocoagulation: application of Box-Behnken design
(BBD), Desal. Water Treat., 148 (2019) 102–118.
- S.Y. Lee, G.A. Gagnon, Review of the factors relevant to the
design and operation of an electrocoagulation system for
wastewater treatment, Environ. Rev., 22 (2014) 421–429.
- K. Ravikumar, S. Ramalingam, S. Krishnan, K. Balu, Application
of response surface methodology to optimize the process
variables for Reactive Red and Acid Brown dye removal using a
novel adsorbent, Dyes Pigm., 70 (2006) 18–26.
- D.C. Montgomery, Design and Analysis of Experiments,
3rd ed., Wiley, New York, NY, 1991.
- APHA, AWWA, WPCF, Standard Methods for the Examination
of Water and Wastewater, 16th ed., American Public
Health Association, American Water Works Association, Water
Pollution Control Federation, 1985.
- T.M. LaPara, J.E. Alleman, P.G. Pope, Miniaturized closed
reflux, colorimetric method for the determination of chemical
oxygen demand, Waste Manage., 20 (2000) 295–298.
- K.K. Garg, B. Prasad, Development of Box–Behnken design
for treatment of terephthalic acid wastewater by electrocoagulation
process: optimization of process and analysis of sludge,
J. Environ. Chem. Eng., 4 (2016) 178–190.
- K.-J. Kim, K. Baek, S. Ji, Y. Cheong, G. Yim, A. Jang, Study
on electrocoagulation parameters (current density, pH, and
electrode distance) for removal of fluoride from groundwater,
Environ. Earth Sci., 75 (2016) 45, doi: 10.1007/s12665-015-
4832-6.
- K. Brahmi, W. Bouguerra, B. Hamrouni, E. Elaloui, M. Loungou,
Z. Tlili, Investigation of electrocoagulation reactor design
parameters effect on the removal of cadmium from synthetic
and phosphate industrial wastewater, Arabian J. Chem.,
12 (2019) 1848–1859.
- S.M. Didar-Ul Islam, Electrocoagulation (EC) technology for
wastewater treatment and pollutants removal, Sustainable
Water Resour. Manage., 5 (2019) 359–380.
- D. Ghernaout, B. Ghernaout, A. Boucherit, M.W. Naceur,
A. Khelifa, A. Kellila, Study on mechanism of electrocoagulation
with iron electrodes in idealised conditions and
electrocoagulation of humic acids solution in batch using
aluminum electrodes, Desal. Water Treat., 8 (2009) 91–99.
- M. Afsharnia, M. Saeidi, Evaluating the effectiveness of
electrocoagulation (EC) process in reducing the COD of
simulated urban runoffs, Int. J. Electrochem. Sci., 13 (2018)
5172–5183.
- T.S.A. Singh, S.T. Ramesh, An experimental study of CI Reactive
Blue 25 removal from aqueous solution by electrocoagulation
using aluminum sacrificial electrode: kinetics and influence of
parameters on electrocoagulation performance, Desal. Water
Treat., 52 (2014) 2634–2642.
- S. Damiri, H.R. Pouretedal, A.R. Ashjerdi, Response
surface optimization of the purification process of cyclotrimethylenetrinitramine
explosive via digestion in binary
solvent mixtures of acetone/water, Sep. Sci. Technol., 52 (2017)
487–496.
- H.R. Pouretedal, M. Fallahgar, F.S. Pourhasan, M. Nasiri,
Taguchi optimization of photodegradation of yellow water of
trinitrotoluene production catalyzed by nanoparticles TiO2/N
under visible light, Iran. J. Catal., 7 (2017) 317–326.
- H.R. Pouretedal, S. Damiri, A. Shahsavan, Modification of
RDX and HMX crystals in procedure of solvent/anti-solvent
by statistical methods of Taguchi analysis design and MLR
technique, Defence Technol., 14 (2018) 59–63.
- H.R. Pouretedal, S. Damiri, A.R. Sharifi, Statistical optimization
for determination of trace amounts of RDX in matrix of HMX
using GC‑ECD, SN Appl. Sci., 1 (2019) 457, doi: 10.1007/
s42452-019-0477-5.