References

  1. X. Liao, Y. Tian, Y. Gan, J. Ji, Quantifying urban wastewater treatment sector’s greenhouse gas emissions using a hybrid life cycle analysis method - an application on Shenzhen city in China, Sci. Total Environ., 745 (2020) 141176, doi: 10.1016/j. scitotenv.2020.141176.
  2. R. Kumar, P. Pal, Assessing the feasibility of N and P recovery by struvite precipitation from nutrient-rich wastewater: a review, Environ. Sci. Pollut. Res. Int., 22 (2015) 17453–17464.
  3. K. Li, Q. Liu, F. Fang, R. Luo, Q. Lu, W. Zhou, S. Huo, P. Cheng, J. Liu, M. Addy, P. Chen, D. Chen, R. Ruan, Microalgaebased wastewater treatment for nutrients recovery: a review, Bioresour. Technol., 291 (2019) 121934, doi: 10.1016/j. biortech.2019.121934.
  4. R. Whitton, F. Ometto, M. Pidou, P. Jarvis, R. Villa, B. Jefferson, Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment, Environ. Technol. Rev., 4 (2015) 133–148.
  5. F. Polesel, H.R. Andersen, S. Trapp, B.G. Plósz, Removal of antibiotics in biological wastewater treatment systems a critical assessment using the activated sludge modeling framework for xenobiotics (ASM-X), Environ. Sci. Technol., 50 (2016) 10316–10334.
  6. L. Zhu, S. Li, T. Hu, Y.K. Nugroho, Z. Yin, D. Hu, R. Chu, F. Mo, C. Liu, E. Hiltunen, Effects of nitrogen source heterogeneity on nutrient removal and biodiesel production of mono- and mix-cultured microalgae, Energy Convers. Manage., 201 (2019) 112144, doi: 10.1016/j.enconman.2019.112144.
  7. E.-S. Salama, M.B. Kurade, R.A.I. Abou-Shanab, M.M. El- Dalatony, I.-S. Yang, B. Min, B.-H. Jeon, Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation, Renewable Sustainable Energy Rev., 79 (2017) 1189–1211.
  8. A.E.-F. Abomohra, W. Jin, R. Tu, S.-F. Han, M. Eid, H. Eladel, Microalgal biomass production as a sustainable feedstock for biodiesel: current status and perspectives, Renewable Sustainable Energy Rev., 64 (2016) 596–606.
  9. K. Suresh Kumar, H.-U. Dahms, E.-J. Won, J.-S. Lee, K.-H. Shin, Microalgae – a promising tool for heavy metal remediation, Ecotoxicol. Environ. Saf., 113 (2015) 329–352.
  10. A.K. Zeraatkar, H. Ahmadzadeh, A.F. Talebi, N.R. Moheimani, M.P. McHenry, Potential use of algae for heavy metal bioremediation, a critical review, J. Environ. Manage., 181 (2016) 817–831.
  11. S.K. Mehta, J.P. Gaur, Use of algae for removing heavy metal ions from wastewater: progress and prospects, Crit. Rev. Biotechnol., 25 (2005) 113–152.
  12. D. Kaplan, Absorption and adsorption of heavy metals by microalgae, Appl. Phycol. Biotechnol., 2 (2013) 602–611.
  13. E.-S. Salama, H.-S. Roh, S. Dev, M.A. Khan, R.A.I. Abou-Shanab, S.W. Chang, B.-H. Jeon, Algae as a green technology for heavy metals removal from various wastewater, World J. Microbiol. Biotechnol., 35 (2019) 1–19, doi: 10.1007/s11274-019-2648-3.
  14. E. Priyadarshini, S.S. Priyadarshini, N. Pradhan, Heavy metal resistance in algae and its application for metal nanoparticle synthesis, Appl. Microbiol. Biotechnol., 103 (2019) 3297–3316.
  15. A. Mantzorou, E. Navakoudis, K. Paschalidis, F. Ververidis, Microalgae: a potential tool for remediating aquatic environments from toxic metals, Int. J. Environ. Technol., 15 (2018) 1815–1830.
  16. Y. Ling, L.-p. Sun, S.-y. Wang, C.S.K. Lin, Z. Sun, Z.-g. Zhou, Cultivation of oleaginous microalga Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production, Biochem. Eng. J., 148 (2019) 162–169.
  17. C.M. Beal, L.N. Gerber, D.L. Sills, M.E. Huntley, S.C. Machesky, M.J. Walsh, J.W. Tester, I. Archibald, J. Granados, C.H. Greene, Algal biofuel production for fuels and feed in a 100-ha facility: a comprehensive techno-economic analysis and life cycle assessment, Algal Res., 10 (2015) 266–279.
  18. G. Huang, F. Chen, D. Wei, X. Zhang, G. Chen, Biodiesel production by microalgal biotechnology, Appl. Energy, 87 (2010) 38–46.
  19. Y. Jiang, U.J. Yves, H. Sun, X. Hu, H. Zhan, Y. Wu, Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou, China, Ecotoxicol. Environ. Saf., 126 (2016) 154–162.
  20. H. Tong, P. Shi, City profile Lanzhou, Cities, 45 (2015) 51–59.
  21. Y. Hou, W. Chu, M. Ma, Carbonaceous and nitrogenous disinfection by-product formation in the surface and ground water treatment plants using Yellow River as water source, J. Environ. Sci., 24 (2012) 1204–1209.
  22. S. Zhao, B. Gao, Q. Yue, S. Sun, Y. Wang, Q. Li, Determination of active ingredients of a new coagulant aid-Enteromorpha by floc characteristics on-line monitoring in Yellow River water treatment, Chem. Eng. J., 232 (2013) 310–318.
  23. M. Arif, L. Wang, E.-S. Salama, M.S. Hussain, X. Li, M. Jalalah, M.S. Al-Assiri, F.A. Harraz, M.-K. Ji, P. Liu, Microalgae isolation for nutrient removal assessment and biodiesel production, Bioenergy Res. (2020) 1247–1259, doi: 10.1007/ s12155–020–10136–5.
  24. G. Gatidou, P. Anastopoulou, M. Aloupi, A.S. Stasinakis, Growth inhibition and fate of benzotriazoles in Chlorella sorokiniana cultures, Sci. Total Environ., 663 (2019) 580–586.
  25. S.K. Gupta, F.A. Ansari, A. Shriwastav, N.K. Sahoo, I. Rawat, F. Bux, Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J. Cleaner Prod., 115 (2016) 255–264.
  26. F. Ndayisenga, Z. Yu, Y. Yu, C.H. Lay, D. Zhou, Bioelectricity generation using microalgal biomass as electron donor in a bio-anode microbial fuel cell, Bioresour. Technol., 270 (2018) 286–293.
  27. G. Chen, R. Shan, S. Li, J. Shi, A biomimetic silicification approach to synthesize CaO–SiO2 catalyst for the transesterification of palm oil into biodiesel, Fuel, 153 (2015) 48–55.
  28. E.G. Bligh, W.J. Dyer, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37 (1959) 911–917, doi: 10.1139/y59-099.
  29. G. Lepage, C.C. Roy, Improved recovery of fatty acid through direct transesterification without prior extraction or purification, J. Lipid Res., 25 (1984) 1391–1396.
  30. R.A.I. Abou-Shanab, I.A. Matter, S.-N. Kim, Y.-K. Oh, J. Choi, B.-H. Jeon, Characterization and identification of lipid-producing microalgae species isolated from a freshwater lake, Biomass Bioenergy, 35 (2011) 3079–3085.
  31. L.F. Ramírez-Verduzco, J.E. Rodríguez-Rodríguez, A.d.R. Jaramillo-Jacob, Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition, Fuel, 91 (2012) 102–111.
  32. E. Daneshvar, C. Santhosh, E. Antikainen, A. Bhatnagar, Microalgal growth and nitrate removal efficiency in different cultivation conditions: effect of macro and micronutrients and salinity, J. Environ. Chem. Eng., 6 (2018) 1848–1854.
  33. H. Alishah Aratboni, N. Rafiei, R. Garcia-Granados, A. Alemzadeh, J.R. Morones-Ramirez, Biomass and lipid induction strategies in microalgae for biofuel production and other applications, Microb. Cell Fact., 18 (2019) 178, doi: 10.1186/s12934-019-1228-4.
  34. W. Lu, Z. Wang, X. Wang, Z. Yuan, Cultivation of Chlorella sp. using raw dairy wastewater for nutrient removal and biodiesel production: characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures, Bioresour. Technol., 192 (2015) 382–388.
  35. W.N.A. Kadir, M.K. Lam, Y. Uemura, J.W. Lim, K.T. Lee, Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: a review, Energy Convers. Manage., 171 (2018) 1416–1429.
  36. Z. Chi, J.V. O’Fallon, S. Chen, Bicarbonate produced from carbon capture for algae culture, Trends Biotechnol., 29 (2011) 537–541.
  37. C. Zhu, X. Zhai, Y. Xi, J. Wang, F. Kong, Y. Zhao, Z. Chi, Efficient CO2 capture from the air for high microalgal biomass production by a bicarbonate Pool, J. CO2 Util., 37 (2020) 320–327.
  38. I.-S. Yang, E.-S. Salama, J.-O. Kim, S.P. Govindwar, M.B. Kurade, M. Lee, H.-S. Roh, B.-H. Jeon, Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and simultaneous nutrient removal, Energy Convers. Manage., 117 (2016) 54–62.
  39. E.M. Fakhry, D.M. El Maghraby, Lipid accumulation in response to nitrogen limitation and variation of temperature in Nannochloropsis salina, Bot Stud., 56 (2015) 1–8, doi: 10.1186/ s40529-015-0085-7.
  40. F. Qie, J. Zhu, J. Rong, B. Zong, Biological removal of nitrogen oxides by microalgae, a promising strategy from nitrogen oxides to protein production, Bioresour. Technol., 292 (2019) 122037, doi: 10.1016/j.biortech.2019.122037.
  41. T. Cai, S.Y. Park, Y. Li, Nutrient recovery from wastewater streams by microalgae: status and prospects, Renewable Sustainable Energy Rev., 19 (2013) 360–369.
  42. L. Yang, H. Li, Q. Wang, A novel one-step method for oilrich biomass production and harvesting by co-cultivating microalgae with filamentous fungi in molasses wastewater, Bioresour. Technol., 275 (2019) 35–43.
  43. Y.K. Leong, J.S. Chang, Bioremediation of heavy metals using microalgae: recent advances and mechanisms, Bioresour. Technol., 303 (2020) 122886, doi: 10.1016/j.biortech.2020.122886.
  44. P.I. Gomes, T. Asaeda, Phycoremediation of chromium(VI) by Nitella and impact of calcium encrustation, J. Hazard. Mater., 166 (2009) 1332–1338.
  45. P.I. Gomes, T. Asaeda, Phytoremediation of heavy metals by calcifying macro-algae (Nitella pseudoflabellata): implications of redox insensitive end products, Chemosphere, 92 (2013) 1328–1334.
  46. M. Chen, H. Tang, H. Ma, T.C. Holland, K.Y. Ng, S.O. Salley, Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta, Bioresour. Technol., 102 (2011) 1649–1655.
  47. L. Rugnini, G. Costa, R. Congestri, L. Bruno, Testing of two different strains of green microalgae for Cu and Ni removal from aqueous media, Sci. Total Environ., 601–602 (2017) 959–967.
  48. W. Shi, X. Fang, X. Wu, G. Zhang, W. Que, F. Li, Alteration of bioaccumulation mechanisms of Cu by microalgae in the presence of natural fulvic acids, Chemosphere, 211 (2018) 717–725.
  49. D.M. Park, D.W. Reed, M.C. Yung, A. Eslamimanesh, M.M. Lencka, A. Anderko, Y. Fujita, R.E. Riman, A. Navrotsky, Y.Q. Jiao, Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags, Environ. Sci. Technol., 50 (2016) 2735–2742.
  50. K.S. Kumar, H.-U. Dahms, E.-J. Won, J.-S. Lee, K.-H. Shin, Microalgae-a promising tool for heavy metal remediation, Ecotoxicol. Environ. Saf., 113 (2015) 329–352.
  51. Z.L. Poh, W.N. Amalina Kadir, M.K. Lam, Y. Uemura, U. Suparmaniam, J.W. Lim, P.L. Show, K.T. Lee, The effect of stress environment towards lipid accumulation in microalgae after harvesting, Renewable Energy, 154 (2020) 1083–1091.
  52. F. Gao, H.L. Yang, C. Li, Y.Y. Peng, M.M. Lu, W.H. Jin, J.J. Bao, Y.M. Guo, Effect of organic carbon to nitrogen ratio in wastewater on growth, nutrient uptake and lipid accumulation of a mixotrophic microalgae Chlorella sp., Bioresour. Technol., 282 (2019) 118–124.
  53. W.P. Sandani, G.K.S.H. Nishshanka, R.G.M.M. Premaratne, S.C. Nanayakkara Wijayasekera, T.U. Ariyadasa, J.K. Premachandra, Comparative assessment of pretreatment strategies for production of microalgae-based biodiesel from locally isolated Chlorella homosphaera, J. Biosci. Bioeng., 130 (2020) 295–305.
  54. J.K. Suastes-Rivas, R. Hernández-Altamirano, V.Y. Mena- Cervantes, E.J. Barrios Gómez, I. Chairez, Biodiesel production, through intensification and profitable distribution of fatty acid methyl esters by a microalgae-yeast co-culture, isolated from wastewater as a function of the nutrients’ composition of the culture media, Fuel, 280 (2020) 118633, doi: 10.1016/j. fuel.2020.118633.
  55. M.A. Islam, G.A. Ayoko, R. Brown, D. Stuart, K. Heimann, Influence of fatty acid structure on fuel properties of algae derived biodiesel, Procedia Eng., 56 (2013) 591–596.
  56. É.C. Francisco, D.B. Neves, E. Jacob-Lopes, T.T. Franco, Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality, J. Chem. Technol. Biotechnol., 85 (2010) 395–403.
  57. F. Sayedin, A. Kermanshahi-pour, Q.S. He, S.M. Tibbetts, C.G. Lalonde, S.K.J.A.R. Brar, Microalgae cultivation in thin stillage anaerobic digestate for nutrient recovery and bioproduct production, Algal Res., 47 (2020) 101867, doi: 10.1016/j.algal.2020.101867.
  58. L. Zhu, Z. Wang, Q. Shu, J. Takala, E. Hiltunen, P. Feng, Z. Yuan, Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment, Water Res., 47 (2013) 4294–4302.
  59. R.A.I. Abou-Shanab, M.M. El-Dalatony, M.M. El-Sheekh, M.-K. Ji, E.-S. Salama, A.N. Kabra, B.-H. Jeon, Cultivation of a new microalga, Micractinium reisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production, Biotechnol. Bioprocess Eng., 19 (2014) 510–518.
  60. M.-K. Ji, R.A.I. Abou-Shanab, S.-H. Kim, E.-S. Salama, S.-H. Lee, A.N. Kabra, Y.-S. Lee, S. Hong, B.-H. Jeon, Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production, Ecol. Eng., 58 (2013) 142–148.
  61. K. Nam, H. Lee, S.-W. Heo, Y.K. Chang, J.-I. Han, Cultivation of Chlorella vulgaris with swine wastewater and potential for algal biodiesel production, J. Appl. Phycol., 29 (2016) 1171–1178.
  62. Y. Li, Y.-F. Chen, P. Chen, M. Min, W. Zhou, B. Martinez, J. Zhu, R. Ruan, Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production, Bioresour Technol., 102 (2011) 5138–5144.
  63. A.F. Talebi, S.K. Mohtashami, M. Tabatabaei, M. Tohidfar, A. Bagheri, M. Zeinalabedini, H. Hadavand Mirzaei, M. Mirzajanzadeh, S. Malekzadeh Shafaroudi, S. Bakhtiari, Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production, Algal Res., 2 (2013) 258–267.
  64. R.K. Bharti, D.W. Dhar, R. Prasanna, A.K. Saxena, Assessment of biomass and lipid productivity and biodiesel quality of an indigenous microalga Chlorella sorokiniana MIC-G5, Int. J. Green Energy, 15 (2017) 45–52.
  65. A. Gopinath, S. Puhan, G. Nagarajan, Theoretical modeling of iodine value and saponification value of biodiesel fuels from their fatty acid composition, Renewable Energy, 34 (2009) 1806–1811.