References

  1. S. Valliammai, Y. Subbareddy, K.S. Nagaraja, B. Jeyaraj, Removal of methylene blue from aqueous solution by activated carbon of Vigna Mungo L and Paspalum scrobiculatum: equilibrium, kinetics and thermodynamic studies, Indian J. Chem. Technol., 24 (2017) 134–144.
  2. V.K. Gupta, R. Kumar, A. Nayak, T.A. Saleh, M.A. Barakat, Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review, Adv. Colloid Interface Sci., 193–194 (2013) 24–34.
  3. A. Salima, B. Benaouda, B. Noureddine, L. Duclaux, Application of ulva lactuca and systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents, Water Res., 47 (2013) 3375–3388.
  4. M.R. Gadekar, M.M. Ahammed, Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach, J. Environ. Manage., 231 (2019) 241–248.
  5. K. Karthick, C. Namasivayam, L.M. Pragasan, Removal of direct red 12B from aqueous medium by ZnCl2 activated Jatropha husk carbon: adsorption dynamics and equilibrium studies, Indian J. Chem. Technol., 24 (2017) 73–81.
  6. C.S. Oliveira, C. Airoldi, Pyridine derivative covalently bonded on chitoasan pendant chains for textile dye removal, Carbohydr. Polym., 102 (2014) 38–46.
  7. W.G. Kuo, Decolorizing dye wastewater with Fenton’s reagent, Water Res., 26 (1992) 881–886.
  8. H.M.H. Gad, A.A. El-Sayed, Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution, J. Hazard. Mater., 168 (2009) 1070–1081.
  9. F.A. Pavan, S.L.P. Dias, E.C. Lima, E.V. Benvenutti, Removal of Congo Red from aqueous solution by anilinepropylsilica xerogel, Dyes Pigm., 76 (2008) 64–69.
  10. K.A.G. Gusmao, L.V.A. Gurgel, T.M.S. Melo, L.F. Gil, Application of succinylated sugarcane bagasse as adsorbent to remove methylene blue and gentian violet from aqueous solutions– kinetic and equilibrium studies, Dyes Pigm., 92 (2012) 967–974.
  11. A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption, J. Colloid Interface Sci., 340 (2009) 16–26.
  12. I. Arslan-Alaton, B.H. Gursoy, J.E. Schimdt, Advanced oxidation of acid and reactive dyes: effect of Fenton treatment on aerobic, anoxic and anaerobic processes, Dyes Pigm., 78 (2008) 117–130.
  13. W.S. Chang, H.T. Tran, D.H. Park, R.H. Zhang, D.H. Ahn, Ammonium nitrogen removal characteristics of zeolite media in a biological aerated filter (BAF) for the treatment of textile wastewater, J. Ind. Eng. Chem., 15 (2009) 524–528.
  14. J.P. Jadhav, G.K. Parshetti, S.D. Kalme, S.P. Govindwar, Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463, Chemosphere, 68 (2007) 394–400.
  15. I.D. Kamalanathan, P.J. Martin, Competitive adsorption of surfactant–protein mixtures in a continuous stripping mode foam fractionation column, Chem. Eng. Sci., 146 (2016) 291–301.
  16. B. Burghoff, Foam fractionation applications, J. Biotechnol., 161 (2012) 126–137.
  17. R. Lemlich, Adsorptive bubble separation methods—foam fractionation and allied techniques, Ind. Eng. Chem., 60 (1968) 16–29.
  18. Z. Zhang, Z. Wu, G. Liu, Interfacial adsorption of methyl orange in liquid phase of foam fractionation using dodecyl dimethyl betaine as the collector, J. Ind. Eng. Chem., 28 (2015) 184–189.
  19. X. Fei, W. Li, S. Zhu, L. Liu, Y. Yang, Simultaneous treatment of dye wastewater and surfactant wastewater by foam separation: experimental and mesoscopic simulation study, Sep. Sci. Technol., 53 (2017) 1604–1610.
  20. K. Lu, X.L. Zhang, Y.L. Zhao, Z.L. Wu, Removal of color from textile dyeing wastewater by foam fractionation, J. Hazard. Mater., 182 (2010) 928–932.
  21. D. Zhang, G. Zeng, J. Huang, W. Bi, X. Gengxin, Spectroscopic studies of dye-surfactant interactions with the co-existence of heavy metal ions for foam fractionation, J. Environ. Sci., 24 (2012) 2068–2074.
  22. K. Lu, R. Li, Z. Wu, K. Hou, X. Du, Y. Zhao, Wall effect on rising foam drainage and its application to foam separation, Sep. Purif. Technol., 118 (2013) 710–715.
  23. B.Y. Tak, B.S. Tak, Y.J. Kim, Y.J. Park, Y.H. Yoon, G.H. Min, Optimization of color and COD removal from livestock wastewater by electrocoagulation process: application of Box- Behnken design (BBD), J. Ind. Eng. Chem., 28 (2015) 307–315.
  24. C. Liyana-Pathirana, F. Shahidi, Optimization of extraction of phenolic compounds from wheat using response surface methodology, Food Chem., 93 (2005) 47–56.
  25. E. Kiassos, S. Mylonaki, D.P. Makris, P. Kefalas, Implementation of response surface methodology to optimize extraction of onion (Allium cepa) solid waste phenolics, Innovation Food Sci. Emerg. Technol., 10 (2009) 246–252.
  26. S. Sharma, N.N. Dutta, G.K. Agrawal, Optimization of copper extraction from spent LTS catalyst (CuO–ZnO–Al2O3) using chelating agent: Box-behnken experimental design methodology, Russ. J. Nonferrous Met., 58 (2017) 22–29.
  27. R.H. Myers, D.C. Mongtgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Wiley, New York, NY, 2009.
  28. H.R. Fouladian, M. Behbahani, Solid phase extraction of Pb(II) and Cd(II) in food, soil, and water samples based on 1-(2-pyridylazo)-2-naphthol-functionalized organic-inorganic mesoporous material with the aid of experimental design methodology, Food Anal. Methods, 8 (2015) 982–993.
  29. A.A. Patil, S.S. Bhusari, D.B. Shinde, P.S. Wakte, Optimization of process variables for phyllanthin extraction from Phyllanthus amarus leaves by supercritical fluid using a Box–Behnken experimental design followed by HPLC identification, Acta Pharm., 63 (2013) 193–207.
  30. A. Sharma, V. Yadava, Optimization of cut quality characteristics during Nd: YAG laser straight cutting of Ni-based superalloy thin sheet using grey relational analysis with entropy measurement, Mater. Manuf. Processes, 26 (2011) 1522–1529.
  31. N. Tosun, Determination of optimum parameters for multiperformance characteristics in drilling by using grey relational analysis, Int. J. Adv. Manuf. Technol., 28 (2006) 450–455.
  32. K.T. Wen, T.C. Chang, M.L. You, The grey entropy and its application in weighting analysis, IEEE Int. Conf. Syst. Man Cybernet., 2 (1998), 1842–1844 doi: 10.1109/ICSMC.1998.728163.
  33. M.J. Tsai, C.H. Li, The use of grey relational analysis to determine laser cutting parameters for QFN packages with multiple performance characteristics, Opt. Laser Technol., 41 (2009) 914–921.