References

  1. H. Wake, Oil refineries: a review of their ecological impacts on the aquatic environment, Estuarine Coastal Shelf Sci., 62 (2005) 131–140.
  2. P. Falås, P. Longrée, J. La Cour Jansen, H. Siegrist, J. Hollender, A. Joss, Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process, Water Res., 47 (2013) 4498–4506.
  3. M. Christensson, T. Welander, Treatment of municipal wastewater in a hybrid process using a new suspended carrier with large surface area, Water Sci. Technol., 49 (2004) 207–214.
  4. K.V. Gernaey, M.C. Van Loosdrecht, M. Henze, M. Lind, S.B. Jørgensen, Activated sludge wastewater treatment plant modelling and simulation: state of the art, Environ. Modell. Softw., 19 (2004) 763–783.
  5. A. Pala, E. Tokat, Color removal from cotton textile industry wastewater in an activated sludge system with various additives, Water Res., 36 (2002) 2920–2925.
  6. I. Martínez-Alcalá, J.M. Guillén-Navarro, C. Fernández-López, Pharmaceutical biological degradation, sorption and mass balance determination in a conventional activated-sludge wastewater treatment plant from Murcia, Spain, Chem. Eng. J., 316 (2017) 332–340.
  7. F. Jung, M.C. Cammarota, D.M.G. Freire, Impact of enzymatic pre-hydrolysis on batch activated sludge systems dealing with oily wastewaters, Biotechnol. Lett., 24 (2002) 1797–1802.
  8. G.T. Tellez, N. Nirmalakhandan, J.L. Gardea-Torresdey, Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water, Adv. Environ. Res., 6 (2002) 455–470.
  9. E. Raper, A. Soares, J. Chen, A. Sutcliffe, E. Aries, D. Anderson, T. Stephenson Enhancing the removal of hazardous pollutants from coke‐making wastewater by dosing activated carbon to a pilot‐scale activated sludge process, J. Chem. Technol. Biotechnol., 92 (2017) 2325–2333.
  10. M.A. Cardete, J. Mata-Álvarez, J. Dosta, R. Nieto-Sánchez, Sludge settling enhancement in a pilot scale activated sludge process treating petrochemical wastewater by implementing aerobic or anoxic selectors, J. Environ. Chem. Eng., 5 (2017) 3472–3482.
  11. E. Loupasaki, E. Diamadopoulos, Attached growth systems for wastewater treatment in small and rural communities: a review, J. Chem. Technol., 88 (2013) 190–204.
  12. J. Chung, W. Bae, Y.W. Lee, B.E. Rittmann, Shortcut biological nitrogen removal in hybrid biofilm/suspended growth reactors, Process Biochem., 42 (2007) 320–328.
  13. Y. Zaoyan, S. Ke, S. Guangliang, Y. Fan, D. Jinshan, M. Huanian, Anaerobic–aerobic treatment of a dye wastewater by combination of RBC with activated sludge, Water Sci. Technol., 26 (1992) 2093–2096.
  14. S.J. You, C.L. Hsu, S.H. Chuang, C.F. Ouyang, Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems, Water Res., 37 (2003) 2281–2290.
  15. D. Di Trapani, M. Christensson, M. Torregrossa, G. Viviani, H. Ødegaard, Performance of a hybrid activated sludge/biofilm process for wastewater treatment in a cold climate region: influence of operating conditions, Biochem. Eng. J., 77 (2013) 214–219.
  16. Y.K. Park, C.H. Lee, Dyeing wastewater treatment by activated sludge process with a polyurethane fluidized bed biofilm, Water Sci. Technol., 34 (1996) 193–200.
  17. S. Aslan, B. Alyüz, Z. Bozkurt, M. Bakaoglu, Characterization and biological treatability of edible oil wastewaters, Pol. J. Environ. Stud., 18 (2009) 533–538.
  18. F. Gebara, Activated sludge biofilm wastewater treatment system, Water Res., 33 (1999) 230–238.
  19. J.L. Su, C.F. Ouyang, Nutrient removal using a combined process with activated sludge and fixed biofilm, Water Sci. Technol., 34 (1996) 477–486.
  20. K. Tang, G.T.H. Ooi, E. Toressi, K.M.S. Kaarsholm, A. Hambly, K. Sundmark, S. Lindholst, C. Sund, C. Kragelund, M. Christensson, K. Bester, H.R. Andersen, Municipal wastewater treatment targeting pharmaceuticals by a pilot-scale hybrid attached biofilm and activated sludge system (Hybas™), Chemosphere, 259 (2020), 127397, https://doi.org/10.1016/j. chemosphere.2020.127397.
  21. K. Hassan, O. Hamdy, M. Helmy, H. Mostafa, Enhancing treated wastewater effluent characteristics using hybrid biofilm/activated sludge process–a case study, Water Sci. Technol., 81 (2020) 217–227.
  22. H.T. Dang, C.V. Dinh, K.M. Nguyen, N.T. Tran, T.T. Pham, R.M. Narbaitz, Loofah sponges as bio-carriers in a pilot-scale integrated fixed-film activated sludge system for municipal wastewater treatment, Sustainability, 12 (2020), 4758–4773.
  23. M. Bagheri, K. Al-jabery, D. Wunsch, J.G. Burken, Examining plant uptake and translocation of emerging contaminants using machine learning: implications to food security, Sci. Total Environ., 698 (2020), 133999–134011.
  24. L. Rossi, M. Bagheri, W. Zhang, Z. Chen, J.G. Burken, X. Ma, Using artificial neural network to investigate physiological changes and cerium oxide nanoparticles and cadmium uptake by Brassica napus plants, Environ. Pollut., 246 (2019) 381–389.
  25. M.B. Fard, S.A. Mirbagheri, A. Pendashteh, J. Alavi, Biological treatment of slaughterhouse wastewater: kinetic modeling and prediction of effluent, J. Environ. Health Sci., 17 (2019) 731–741.
  26. M. Bagheri, K. Al-jabery, D.C. Wunsch, J.G. Burken, A deeper look at plant uptake of environmental contaminants using intelligent approaches, Sci. Total Environ., 651 (2019) 561–569.
  27. M. Bagheri, A. Akbari, S.A. Mirbagheri, Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: a critical review, Process Saf. Environ., 123 (2019) 229–252.
  28. H.A. Mokhtari, M. Bagheri, S.A. Mirbagheri, A. Akbari, Performance evaluation and modelling of an integrated municipal wastewater treatment system using neural networks, Water Environ. J., (2020) (in Press), https://doi.org/10.1111/ wej.12565.
  29. F. Shokri Dariyan, A. Eslami, E. Aghayani, M. Pourakbar, A. Oghazyan, Comparison of artificial neural network and multi-kinetic models to predict optimum retention time for dairy wastewater treatment in the integrated fixed-film activated sludge, Int. J. Environ. Anal. Chem., (2020), https:// doi.org/10.1080/03067319.2020.1785442.
  30. A. Noroozi, M. Farhadian, A. Solaimanynazar, Kinetic coefficients for the domestic wastewater treatment using hybrid activated sludge process, Desal. Water Treat., 57 (2016) 4439–4446.
  31. N. Delgrange, C. Cabassud, M. Cabassud, L. Durand-Bourlier, J.M. Laine, Neural networks for prediction of ultrafiltration transmembrane pressure–application to drinking water production, J. Membr. Sci., 150 (1998) 111–123.
  32. Y. Yang, K. Tsukahara, S. Sawayama, Performance and methanogenic community of rotating disk reactor packed with polyurethane during thermophilic anaerobic digestion, Mater. Sci. Eng., 27 (2007) 767–772.
  33. Y. Liu, Y.M. Lin, S.F. Yang, J.H. Tay, A balanced model for biofilms developed at different growth and detachment forces, Process Biochem., 38 (2003) 1761–1765.
  34. A. Gjaltema, L. Tijhuis, M. Van Loosdrecht, J.J. Heijnen, Detachment of biomass from suspended nongrowing spherical biofilms in airlift reactors, Biotechnol. Bioeng., 46 (1995) 258–269.
  35. P.S. Kodukula, T. Prakasam, A.C. Anthonisen, Role of pH in Biological Wastewater Treatment Processes, M. Bazin, Ed., Physiological Models in Microbiology, CRC Press, Boca Raton, FL, 2018, pp. 113–135.
  36. W. Jianlong, S. Hanchang, Q. Yi, Wastewater treatment in a hybrid biological reactor (HBR): effect of organic loading rates, Process Biochem., 36 (2000) 297–303.
  37. S.A. Mirbagheri, S. Malekmohamadi, M. Ehteshami, Designing activated carbon and zeolite amended biosand filters: optimization using response surface methodology, Desal. Water Treat., 93 (2017) 48–60.
  38. American Public Health Association and American Water Works Association, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 1989.
  39. S.S. Haykin, Neural Networks and Learning Machines/Simon Haykin, Prentice Hall, New York, NY, 2009.
  40. G. Onkal-Engin, I. Demir, S.N. Engin, Determination of the relationship between sewage odour and BOD by neural networks, Environ. Modell. Softw., 20 (2005) 843–850.
  41. M. Kubat, Artificial Neural Networks, M. Kubat, Ed., An Introduction to Machine Learning, Springer, Cham, Switzerland, 2015, pp. 91–111.
  42. Z.H. Zhou, J. Wu, W. Tang, Ensembling neural networks: many could be better than all, Artif. Intell., 137 (2002) 239–263.
  43. R. Soleimani, N.A. Shoushtari, B. Mirza, A. Salahi, Experimental investigation, modeling and optimization of membrane separation using artificial neural network and multi-objective optimization using genetic algorithm, Chem. Eng. Res. Des., 91 (2013) 883–903.
  44. U.S. Environmental Protection Agency, National Recommended Water Quality Criteria-Correction, EPA 822-Z-99–001, 1999.
  45. F. Ma, J.B. Guo, L.J. Zhao, C.C. Chang, D. Cui, Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater, Bioresour. Technol., 100 (2009) 597–602.
  46. S. Delin, W. Jianlong, L. Kaiwen, Z. Ding, Kinetic performance of oil-field produced water treatment by biological aerated filter, Chin. J. Chem. Eng., 15 (2007) 591–594.
  47. K. Tong, Y. Zhang, G. Liu, Z. Ye, P. Chu, Treatment of heavy oil wastewater by a conventional activated sludge process coupled with an immobilized biological filter, Int. Biodeterior. Biodegrad., 84 (2013) 65–71.
  48. I.N. Dias, A.C. Cerqueira, G.L. Sant’Anna, M. Dezotti, Oil refinery wastewater treatment in biofilm reactor followed by sand filtration aiming water reuse, J. Water Reuse Desal., 2 (2012) 84–91.
  49. S. Shokrollahzadeh, F. Azizmohseni, F. Golmohammad, H. Shokouhi, F. Khademhaghighat, Biodegradation potential and bacterial diversity of a petrochemical wastewater treatment plant in Iran, Bioresour. Technol., 99 (2008) 6127–6133.
  50. H. Gasim, A.R.M.M.A. Megat, R.M.K. Shamsul, Treatment of petroleum refinery wastewater using extended aeration activated sludge, Int. J. Eng. Res. Afr., 13 (2015) 1–7.
  51. W. Xie, L. Zhong, J. Chen, Treatment of slightly polluted wastewater in an oil refinery using a biological aerated filter process, Wuhan Univ. J. Nat. Sci., 12 (2007) 1094–1098.
  52. G.H. Ahmed, S.R.M. Kutty, M.H. Isa, Petroleum refinery effluent biodegradation in sequencing batch reactor, Int. J. Appl. Sci., 1 (2011) 179–183.
  53. M. Perez, R. Rodriguez-Cano, L. Romero, D. Sales, Performance of anaerobic thermophilic fluidized bed in the treatment of cutting-oil wastewater, Bioresour. Technol., 98 (2007) 3456–3463.
  54. N. Otadi, A. Hassani, A. Javid, F. Khiabani, Oily compounds removal in wastewater treatment system of pars oil refinery to improve its efficiency in a lab scale pilot, J. Water Chem. Technol., 32 (2010) 370–377.
  55. E. Sekman, S. Top, E. Uslu, G. Varank, M. Bilgili, Treatment of oily wastewater from port waste reception facilities by electrocoagulation, Int. J. Environ. Res., 5 (2011) 1079–1086.
  56. N.S. Dumore, M. Mukhopadhyay, Removal of oil and grease using immobilized triacylglycerin lipase, Int. Biodeterior. Biodegrad., 68 (2012) 65–70.
  57. Y. Wang, Q. Wang, M. Li, Y. Yang, W. He, G. Yan, S. Guo, An alternative anaerobic treatment process for treatment of heavy oil refinery wastewater containing polar organics, Biochem. Eng. J., 105 (2016) 44–51.
  58. C.Y. Cao, Y.H. Zhao, The comparison of MBBR and ASP for treatment on petrochemical wastewater, Pet. Sci. Technol., 30 (2012) 1461–1467.
  59. S.A. Mirbagheri, M. Ebrahimi, M. Mohammadi, Optimization method for the treatment of Tehran petroleum refinery wastewater using activated sludge contact stabilization process, Desal. Water Treat., 52 (2014) 156–163.
  60. M. Hamoda, A. Al-Haddad, Treatment of petromeum refinery effulents in a fixed-film reactor, Water Sci. Technol., 20 (1988) 131–140.
  61. L. Zhidong, L. Na, Z. Honglin, L. Dan, Study of an A/O submerged membrane bioreactor for oil refinery wastewater treatment, Pet. Sci. Technol., 27 (2009) 1274–1285.
  62. M. Bagheri, S.A. Mirbagheri, Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater, Bioresour. Technol., 258 (2018) 318–334.
  63. T.P. Moisés, B.H. Patricia, C. Barrera-Díaz, R.M. Gabriela, R. Natividad-Rangel, Treatment of industrial effluents by a continuous system: electrocoagulation–activated sludge, Bioresour. Technol., 101 (2010) 7761–7766.
  64. B.K. Körbahti, K. Artut, Electrochemical oil/water demulsification and purification of bilge water using Pt/Ir electrodes, Desalination, 258 (2010) 219–228.
  65. S.G. Velioĝlu, K. Curi, S.R. Çamlilar, Activated sludge treatability of olive oil-bearing wastewater, Water Res., 26 (1992) 1415–1420.
  66. A. Pendashteh, A. Fakhru’l‐Razi, T. Chuah, A.D. Radiah, S. Madaeni, Z. Zurina, Biological treatment of produced water in a sequencing batch reactor by a consortium of isolated halophilic microorganisms, Environ. Technol., 31 (2010) 1229–1239.
  67. A. Giwa, S. Daer, I. Ahmed, P. Marpu, S. Hasan, Experimental investigation and artificial neural networks ANNs modeling of electrically-enhanced membrane bioreactor for wastewater treatment, J. Water Process Eng., 11 (2016) 88–97.
  68. D. Aguado, J. Ribes, T. Montoya, J. Ferrer, A. Seco, A methodology for sequencing batch reactor identification with artificial neural networks: a case study, Comput. Chem. Eng., 33 (2009) 465–472.
  69. S. Mirbagheri, M. Bagheri, M. Ehteshami, Z. Bagheri, M. Pourasghar, Modeling of mixed liquor volatile suspended solids and performance evaluation for a sequencing batch reactor, J. Urban Environ. Eng., 9 (2015) 54–65.
  70. M. Bagheri, S.A. Mirbagheri, M. Ehteshami, Z. Bagheri, A.M. Kamarkhani, Analysis of variables affecting mixed liquor volatile suspended solids and prediction of effluent quality parameters in a real wastewater treatment plant, Desal. Water Treat., 57 (2016) 21377–21390.
  71. A.R. Pendashteh, A. Fakhru’l-Razi, N. Chaibakhsh, L.C. Abdullah, S.S. Madaeni, Z.Z. Abidin, Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network, J. Hazard. Mater., 192 (2011) 568–575.
  72. H. Gong, R. Pishgar, J. Tay, Artificial neural network modelling for organic and total nitrogen removal of aerobic granulation under steady-state condition, Environ. Technol., 40 (2019) 3124–3139.