References

  1. M. Imran, D.E. Crowley, A. Khalid, S. Hussain, M.W. Mumtaz, M. Arshad, Microbial biotechnology for decolorization of textile wastewaters, Rev. Environ. Sci. Bio/Technol., 14 (2015) 73–92.
  2. M.M. Hassan, C.M. Carr, A critical review on recent advancements of the removal of reactive dyes from dye house effluent by ion-exchange adsorbents, Chemosphere, 209 (2018) 201–219.
  3. Z. Noorimotlagh, R.D.C. Soltani, A. Khataee, S. Shahriyar, H. Nourmoradi, Adsorption of a textile dye in aqueous phase using mesoporous activated carbon prepared from Iranian milk vetch, J. Taiwan Inst. Chem. Eng., 45 (2014) 1783–1791.
  4. M.M.R. Khan, M.Z.B. Mukhlish, M.S.I. Mazumder, K. Ferdous, D.M.R. Prasad, Z. Hassan, Uptake of Indosol Dark-blue GL dye from aqueous solution by water hyacinth roots powder: adsorption and desorption study, Int. J. Environ. Sci. Technol., 11 (2014) 1027–1034.
  5. M.Z.B. Mukhlish, Y. Horie, T. Nomiyama, Flexible aluminasilica nanofibrous membrane and its high adaptability in reactive red-120 dye removal from water, Water Air Soil Pollut., 228 (2017) 371.
  6. Y. Fu, L. Qin, D. Huang, G. Zeng, C. Lai, B. Li, J. He, H. Yi, M. Zhang, M. Cheng, X. Wen, Chitosan functionalized activated coke for Au nanoparticles anchoring: green synthesis and catalytic activities in hydrogenation of nitrophenols and azo dyes, Appl. Catal. B, 255 (2019) 117740.
  7. Y. Fu, P. Xu, D. Huang, G. Zeng, C. Lai, L. Qin, B. Li, J. He, H. Yi, M. Cheng, C. Zhang, Au nanoparticles decorated on activated coke via a facile preparation for efficient catalytic reduction of nitrophenols and azo dyes, Appl. Surf. Sci., 473 (2019) 578–588.
  8. S.P. Kim, M.Y. Choi, H.C. Choi, Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation, Mater. Res. Bull., 74 (2016) 85–89.
  9. H. Zhou, D.W. Smith, Advanced technologies in water and wastewater treatment, J. Environ. Eng. Sci., 1 (2002) 247–264.
  10. M.Z.B. Mukhlish, M.R. Khan, M.S. Islam, M.I. Nazir, J.S. Snigdha, R. Akter, H. Ahmad, Decolorization of reactive dyes from aqueous solution using combined coagulationflocculation and photochemical oxidation (UV/H2O2), Sustain. Chem. Eng., 1 (2020) 51–61.
  11. P. Sathishkumar, R.V. Mangalaraja, S. Anandan, M. Ashokkumar, CoFe2O4/TiO2 nanocatalysts for the photocatalytic degradation of Reactive Red 120 in aqueous solutions in the presence and absence of electron acceptors, Chem. Eng. J., 220 (2013) 302–310.
  12. C.-J. Li, J.-N. Wang, B. Wang, J. RuGong, Z. Lin, A novel magnetically separable TiO2/CoFe2O4 nanofiber with high photocatalytic activity under UV–vis light, Mater. Res. Bull., 47 (2012) 333–337.
  13. A.B.A. Baig, V. Rathinam, J. Palaninathan, Fabrication of Zr‑doped SnO2 nanoparticles with synergistic influence for improved visible‑light photocatalytic action and antibacterial performance, Appl. Water Sci., 10 (2020) 85.
  14. P.V. Viet, C.M. Thi, L.V. Hieu, The high photocatalytic activity of SnO2 nanoparticles synthesized by hydrothermal Method, J. Nanomater., 2016 (2016) 4231046.
  15. A. Kumar, G. Pandey, Desalination and water treatment photocatalytic degradation of Eriochrome Black-T by the Ni:TiO2 nanocomposites, Desal. Water Treat., 71 (2017) 406–419.
  16. O. Solcova, L. Spacilova, Y. Maleterova, M. Morozova, M. Ezechias, Z. Kresinova, Photocatalytic water treatment on TiO2 thin layers, Desal. Water Treat., 57 (2016) 11631–11638.
  17. A.M. Al-Hamdi, U. Rinner, M. Sillanpääa, Tin dioxide as a photocatalyst for water treatment: a review, Process Saf. Environ. Prot., 107 (2017) 190–205.
  18. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  19. N. Wu, H. Wei, L. Zhang, Efficient removal of heavy metal ions with biopolymer template synthesized mesoporous titania beads of hundreds of micrometers size, Environ. Sci. Technol., 46 (2012) 419–425.
  20. B. Krishnakumar, M. Swaminathan, Solar photocatalytic degradation of Naphthol Blue Black, Desal. Water Treat., 51 (2013) 6572–6579.
  21. M.H.S. Abadi, M.N. Hamidon, A.H. Shaari, N. Abdullah, R. Wagiran, SnO2/Pt thin film laser ablated gas sensor array, Sensors (Basel), 11 (2011) 7724–7735.
  22. Z. Tebby, M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, C. Labrugère, L. Hirsch, Low-temperature UV processing of nanoporous SnO2 layers for dye-sensitized solar cells, ACS Appl. Mater. Interfaces, 3 (2011) 1485–1491.
  23. Y. Fukai, Y. Kondo, S. Mori, E. Suzuki, Highly efficient dyesensitized SnO2 solar cells having sufficient electron diffusion length, Electrochem. Commun., 9 (2007) 1439–1443.
  24. K.L. Chopra, S. Major, D.K. Pandya, Transparent conductors – a status review, Thin Solid Films, 102 (1983) 1–46.
  25. H.-M. Xiong, K.-K. Zhao, X. Zhao, Y.-W. Wang, J.-S. Chen, Elucidating the conductivity enhancement effect of nano-sized SnO2 fillers in the hybrid polymer electrolyte PEO–SnO2– LiClO4, Solid State Ionics, 159 (2003) 89–95.
  26. E. Abdelkader, L. Nadjia, V. Rose-Noëlle, Adsorption of Congo red azo dye on nanosized SnO2 derived from sol–gel method, Int. J. Ind. Chem., 7 (2016) 53–70.
  27. V.K. Vidhu, D. Philip, Phytosynthesis and applications of bioactive SnO2 nanoparticles, Mater. Charact., 101 (2015) 97–105.
  28. G. Elango, S.M. Roopan, Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye, J. Photochem. Photobiol. B, 155 (2016) 34–38.
  29. K. Anandan, V. Rajendran, Influence of dopant concentrations (Mn = 1, 2 and 3 mol%) on the structural, magnetic and optical properties and photocatalytic activities of SnO2 nanoparticles synthesized via the simple precipitation process, Superlattices Microstruct., 85 (2015) 185–197.
  30. K. Kogo, H. Yoneyama, H. Tamura, Photocatalytic oxidation of cyanide on platinized titanium dioxide, J. Phys. Chem., 84 (1980) 1705–1710.
  31. F. Amano, E. Ishinaga, A. Yamakata, Effect of particle size on the photocatalytic activity of WO3 particles for water oxidation, J. Phys. Chem. C, 117 (2013) 22584–22590.
  32. A.L. Rudd, C.B. Breslin, Photo-induced dissolution of zinc in alkaline solutions, Electrochim. Acta, 45 (2000) 1571–1579.
  33. C.M. Ma, G.B. Hong, S.C. Lee, Facile synthesis of tin dioxide nanoparticles for photocatalytic degradation of congo red dye in aqueous solution, Catalysts, 10 (2020) 792.
  34. M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M.M. Müller, H.J. Kleebe, J. Ziegler, W. Jaegermann, Nanostructured SnO2−ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes, Inorg. Chem., 51 (2012) 7764−7773.
  35. X. Zhu, Z. Guo, P. Zhang, Guo, G. Du, R. Zeng, H. Liu, Z. Chen, Tin oxide thin film with three-dimensional ordered reticular morphology as a lithium ion battery anode, ChemPhys Chem, 10 (2009) 3101–3104.
  36. M.T. Uddin, Y. Sultana, M.A. Islam, Nano-sized SnO2 photocatalysts: synthesis, characterization and their application for the degradation of methylene blue dye, J. Sci. Res., 8 (2016) 399–411.
  37. X. Zhang, C. Shao, Z. Zhang, J. Li, P. Zhang, M. Zhang, J. Mu, Z. Guo, P. Liang, Y. Liu, In situ generation of well-dispersed ZnO quantum dots on electrospun silica nanotubes with high photocatalytic activity, ACS Appl. Mater. Interfaces, 4 (2012) 785−790.
  38. G. Zhang, W. Xu, Z. Li, W. Hu, Y. Wang, Preparation and characterization of multi-functional CoFe2O4–ZnO nanocomposites, J. Magn. Magn. Mater., 321 (2009) 1424–1427.
  39. Y.H. Hou, Y.J. Zhao, Z.W. Liu, H.Y. Yu, X.C. Zhong, W.Q. Qiu, D.C. Zeng, L.S. Wen, Structural, electronic and magnetic properties of partially inverse spinel CoFe2O4: a firstprinciples study, J. Phys. D, 43 (2010) 445003.
  40. B. Ren, W. Shen, L. Li, S. Wu, W. Wang, 3D CoFe2O4 nanorod/flower-like MoS2 nanosheet heterojunctions as recyclable visible light-driven photocatalysts for the degradation of organic dyes, Appl. Surf. Sci., 447 (2018) 711–723.
  41. Z. Yang, Y. Shi, B. Wang, Photocatalytic activity of magnetically anatase TiO2 with high crystallinity and stability for dyes degradation: insights into the dual roles of SiO2 interlayer between TiO2 and CoFe2O4, Appl. Surf. Sci., 399 (2017) 192–199.
  42. M. Ghobadifard, S. Mohebbi, Novel nanomagnetic Ag/β-Ag2WO4/CoFe2O4 as a highly efficient photocatalyst under visible light irradiation, New J. Chem., 42 (2018) 9530–9542.
  43. S. Huang, Y. Xu, M. Xie, H. Xu, M. He, J. Xia, L. Huang, H. Li, Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visiblelight, Colloids Surf. A, (2015) 93287126. doi: http://dx.doi. org/10.1016/j.colsurfa.2015.03.035
  44. Y. Li, L. Li, J. Hu, L. Yan, Spray pyrolysis synthesis of MnFe2O4/SnO2 yolk/shell composites for magnetically recyclable photocatalyst, Mater. Lett., 199 (2017) 135−138.
  45. W. Wu, S. Zhang, F. Ren, X. Xiao, J. Zhou, C. Jiang, Controlled synthesis of magnetic iron oxides@SnO2 quasi-hollow core–shell heterostructures: formation mechanism, and enhanced photocatalytic activity, Nanoscale, 3 (2011) 4676–4684.
  46. C. Karunakaran, S. Sakthiraadha, P. Gomathisankar, P. Vinayagamoorthy, Fe3O4/SnO2 nanocomposite: hydrothermal and sonochemical synthesis, characterization, and visible-light photocatalytic and bactericidal activities, Powder Technol., 246 (2013) 635−642.
  47. I. Arshadnia, M. Movahedi, N. Rasouli, SnFe2O4/SnO2/PANI magnetically separable photocatalyst for decolorization of two dye mixture in aqueous solution, Surf. Interfaces, 8 (2017) 91−96.
  48. T.V.K. Karthik, A. Maldonado, M. de la L. Olvera, Synthesis of Tin Oxide Powders by Homogeneous Precipitation. Structural and Morphological Characterization, 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, 26–28 Sept. 2012, pp. 1–7. doi: 10.1109/ICEEE.2012.6421145
  49. B.M. Babić, S.K. Milonjić, M.J. Polovina, B.V. Kaludierović, Point of zero charge and intrinsic equilibrium constants of activated carbon cloth, Carbon, 37 (1999) 477–481.
  50. S.K. Milonjić, A.L. Ruvarac, M.V. Šušić, The heat of immersion of natural magnetite in aqueous solutions, Thermochim. Acta, 11 (1975) 261–266.
  51. E. Abroushan, S. Farhadi, A. Zabardasti, Ag3PO4/CoFe2O4 magnetic nanocomposite: synthesis, characterization and applications in catalytic reduction of nitrophenols and sunlight-assisted photocatalytic degradation of organic dye pollutants, RSC Adv., 7 (2017) 18293–18304.
  52. N. Adeela, K. Maaz, U. Khan, S. Karim, A. Nisar, M. Ahmad, G. Ali, X.F. Han, J.L. Duan, J. Liu, Influence of manganese substitution on structural and magnetic properties of CoFe2O4 nanoparticles, J. Alloys Compd., 639 (2015) 533–540.
  53. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philos. Mag., 22 (1970) 903−922.
  54. E. Sanchez, T. Lopez, Effect of the preparation method on the band gap of titania and Pt-titania sol-gel materials, Mater. Lett., 25 (1995) 271–275.
  55. F. Jahan, M.H. Islan, B.E. Smith, Band-gap and refractive-index determination of Mo-black coatings using several techniques, Sol. Energy Mater. Sol. Cells, 37 (1995) 283–293.
  56. L.G. Devi, M. Srinivas, Hydrothermal synthesis of reduced graphene oxide-CoFe2O4 heteroarchitecture for high visible light photocatalytic activity: exploration of efficiency, stability and mechanistic pathways, J. Environ. Chem. Eng., 5 (2017) 3243–3255.
  57. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051–1069.
  58. B.-H. Chen, W. Liu, A. Li, Y.-J. Liu, Z.-S. Chao, A simple and convenient approach for preparing core–shell-like silica@nickel species nanoparticles: highly efficient and stable catalyst for the dehydrogenation of 1,2-cyclohexanediol to catechol, Dalton Trans., 44 (2015) 1023–1038.
  59. G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Surface area and pore texture of catalysts, Catal. Today, 41 (1998) 207–219.
  60. N.M. Flores, U. Pal, R. Galeazzi, A. Sandoval, Effects of morphology, surface area, and defect content on the photocatalytic dye degradation performance of ZnO nanostructures, RSC Adv., 4 (2014) 41099.
  61. P. Velusamy, G. Lakshmi, Enhanced photocatalytic performance of (ZnO/CeO2)-b-CD system for the effective decolorization of rhodamine B under UV light irradiation, Appl. Water Sci., 7 (2017) 4025–4036.
  62. E. Tombácz, pH-dependent surface charging of metal oxides, Period. Polytech. Chem. Eng., 53 (2009) 77–86.
  63. C.C. Chen, C.S. Lu, Y.C. Chungb, J.L. Jan, UV light induced photodegradation of malachite green on TiO2 nanoparticles, J. Hazard. Mater., 141 (2007) 520–528.
  64. S. Guo, G. Zhang, Y. Guo, J.C. Yu, Graphene oxide-Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants, Carbon, 60 (2013) 437–444.
  65. X. Yong, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals, Am. Mineral., 85 (2000) 543–556.