References

  1. T.R. Waghmode, M.B. Kurade, R.T. Sapkal, C.H. Bhosale, B.-H. Jeon, S.P. Govindwar, Sequential photocatalysis and biological treatment for the enhanced degradation of the persistent azo dye methyl red, J. Hazard. Mater., 371 (2019) 115–122.
  2. B. Boutra, M. Trari, Solar photodegradation of a textile azo dye using synthesized ZnO/bentonite, Water Sci. Technol., 75 (2017) 1211–1220.
  3. P. Mondal, S. Baksi, D. Bose, Study of environmental issues in textile industries and recent wastewater treatment technology, World Sci. News, 61 (2017) 98–109.
  4. C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications, Renewable Sustainable Energy Rev., 81 (2018) 536–551.
  5. A.H. Ali, S. Kapoor, S.K. Kansal, Studies on the photocatalytic decolorization of pararosanilne chloride dye and its simulated dyebath effluent, Desal. Water Treat., 25 (2011) 268–275.
  6. J.G. Wang, P. Zhang, X. Li, J. Zhu, H.X. Li, Synchronical pollutant degradation and H2 production on a Ti3+-doped TiO2 visible photocatalyst with dominant (0 0 1) facets, Appl. Catal., B, 134 (2013) 198–204.
  7. H. Liu, X.N. Dong, X.C. Wang, C.C. Sun, J.Q. Li, Z.F. Zhu, A green and direct synthesis of graphene oxide encapsulated TiO2 core/shell structures with enhanced photoactivity, Chem. Eng. J., 230 (2013) 279–285.
  8. S.Z. You, Y. Hu, X.C. Liu, C.H. Wei, Synergetic removal of Pb(II) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2 composite photocatalyst under visible light, Appl. Catal., B, 232 (2018) 288–298.
  9. B. Neppolian, L. Ciceri, C.L. Bianchi, F. Grieser, M. Ashokkumar, Sonophotocatalytic degradation of 4-chlorophenol using Bi2O3/TiZrO4 as a visible light responsive photocatalyst, Ultrason. Sonochem., 18 (2011) 135–139.
  10. V. Vaiano, G. Iervolino, L. Rizzo, Cu-doped ZnO as efficient photocatalyst for the oxidation of arsenite to arsenate under visible light, Appl. Catal., B, 238 (2018) 471–479.
  11. J.H. Feng, Y.Y. Li, Z.Q. Gao, H. Lv, X.B. Zhang, D.W. Fan, Q. Wei, Visible-light driven label-free photoelectrochemical immunosensor based on TiO2/S-BiVO4@Ag2S nanocomposites for sensitive detection OTA, Biosens. Bioelectron., 99 (2018) 14–20.
  12. V. Vaiano, O. Sacco, D. Sannino, Electric energy saving in photocatalytic removal of crystal violet dye through the simultaneous use of long-persistent blue phosphors, nitrogendoped TiO2 and UV-light emitting diodes, J. Cleaner Prod., 210 (2019) 1015–1021.
  13. L. Das, U. Maity, J.K. Basu, The photocatalytic degradation of carbamazepine and prediction by artificial neural networks, Process Saf. Environ. Prot., 92 (2014) 888–895.
  14. S. Agarwal, I. Tyagi, V.K. Gupta, M. Ghaedi, M. Masoomzade, A.M. Ghaedi, B. Mirtamizdoust, Kinetics and thermodynamics of methyl orange adsorption from aqueous solutions—artificial neural network-particle swarm optimization modeling, J. Mol. Liq., 218 (2016) 354–362.
  15. D. Podstawczyk, A. Witek-Krowiak, A. Dawiec, A. Bhatnagar, Biosorption of copper(II) ions by flax meal: empirical modeling and process optimization by response surface methodology (RSM) and artificial neural network (ANN) simulation, Ecol. Eng., 83 (2015) 364–379.
  16. S. Mandal, S. Mahapatra, R.K. Patel, Enhanced removal of Cr(VI) by cerium oxide polyaniline composite: optimization and modeling approach using response surface methodology and artificial neural networks, J. Environ. Chem. Eng., 3 (2015) 870–885.
  17. L.F. Yin, J.F. Niu, Z.Y. Shen, J. Chen, Mechanism of reductive decomposition of pentachlorophenol by Ti-doped β-Bi2O3 under visible light irradiation, Environ. Sci. Technol., 44 (2010) 5581–5586.
  18. C. Karunakaran, P. Magesan, P. Gomathisankar, Photocatalytic activity of sol–gel derived Bi2O3-TiO2 nanocomposite, Mater. Sci. Forum, 712 (2012) 73–83.
  19. S. Sood, S.K. Mehta, A.S.K. Sinha, S.K. Kansal, Bi2O3/TiO2 heterostructures: synthesis, characterization and their application in solar light mediated photocatalyzed degradation of an antibiotic, ofloxacin, Chem. Eng. J., 290 (2016) 45–52.
  20. J.L. Wang, X.D. Yang, K. Zhao, P.F. Xu, L.B. Zong, R.B. Yu, D. Wang, J.X. Deng, J. Chen, X.R. Xing, Precursor-induced fabrication of β-Bi2O3 microspheres and their performance as visible-light-driven photocatalysts, J. Mater. Chem. A, 1 (2013) 9069–9074.
  21. A. Habibi-Yangjeh, S. Feizpoor, D. Seifzadeh, S. Ghosh, Improving visible-light-induced photocatalytic ability of TiO22 through coupling with Bi3O4Cl and carbon dot nanoparticles, Sep. Purif. Technol., 238 (2020) 116404, https://doi.org/10.1016/j. seppur.2019.116404.
  22. P.Y. Ayekoe, D. Robert, D.L. Goné, Preparation of effective TiO2/Bi2O3 photocatalysts for water treatment, Environ. Chem. Lett., 14 (2016) 387–393.
  23. O. Bechambi, S. Sayadi, W. Najjar, Photocatalytic degradation of bisphenol A in the presence of C-doped ZnO: effect of operational parameters and photodegradation mechanism, J. Ind. Eng. Chem., 32 (2015) 201–210.
  24. A. Uheida, A. Mohamed, M. Belaqziz, W.S. Nasser, Photocatalytic degradation of Ibuprofen, Naproxen, and Cetirizine using PAN-MWCNT nanofibers crosslinked TiO2-NH2 nanoparticles under visible light irradiation, Sep. Purif. Technol., 212 (2019) 110–118.
  25. D. Sud, A. Syal, Investigations on the phase transformation, optical characteristics, and photocatalytic activity of synthesized heterostructured nanoporous Bi2O3-TiO2, J. Chin. Chem. Soc., 63 (2016) 776–783.
  26. V.K. Gupta, R. Jain, A. Mittal, T.A. Saleh, A. Nayak, S. Agarwal, S. Sikarwar, Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions, Mater. Sci. Eng., C, 32 (2012) 12–17.
  27. R. Abazari, A.R. Mahjoub, G. Salehi, Preparation of amine functionalized g-C3N4@H/SMOF NCs with visible light photocatalytic characteristic for 4-nitrophenol degradation from aqueous solution, J. Hazard. Mater., 365 (2019) 921–931.
  28. Z.J. Cheng, L. Zhang, X. Guo, X.H. Jiang, T. Li, Adsorption behavior of direct red 80 and Congo red onto activated carbon/surfactant: process optimization, kinetics and equilibrium, Spectrochim. Acta, Part A, 137 (2015) 1126–1143.
  29. A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J.L. Zhang, Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst, J. Hazard. Mater., 177 (2010) 781–791.
  30. P. Nuengmatcha, P. Porrawatkul, S. Chanthai, P. Sricharoen, N. Limchoowong, Enhanced photocatalytic degradation of methylene blue using Fe2O3/graphene/CuO nanocomposites under visible light, J. Environ. Chem. Eng., 7 (2019) 103438, https://doi.org/10.1016/j.jece.2019.103438.
  31. S. Fakhravar, M. Farhadian, S. Tangestaninejad, Excellent performance of a novel dual Z-scheme Cu2S/Ag2S/BiVO4 heterostructure in metronidazole degradation in batch and continuous systems: Immobilization of catalytic particles on α-Al2O3 fiber, Appl. Surf. Sci., 505 (2020) 144599, https://doi. org/10.1016/j.apsusc.2019.144599.
  32. L. Pirinejad, A. Maleki, B. Shahmoradi, H. Daraei, J.-K. Yang, S.-M. Lee, Synthesis and application of Fe-N-Cr-TiO2 nanocatalyst for photocatalytic degradation of Acid Black 1 under LED light irradiation, J. Mol. Liq., 279 (2019) 232–240.
  33. V. Barahimi, H. Moghimi, R.A. Taheri, Cu doped TiO2-Bi2O3 nanocomposite for degradation of azo dye in aqueous solution: process modeling and optimization using central composite design, J. Environ. Chem. Eng., 7 (2019) 103078, https://doi. org/10.1016/j.jece.2019.103078.
  34. M.H. Sayadi, S. Sobhani, H. Shekari, Photocatalytic degradation of azithromycin using GO@Fe3O4/ZnO/SnO2 nanocomposites, J. Cleaner Prod., 232 (2019) 127–136.
  35. A. Kumar, B. Subash, B. Krishnakumar, A.J.F.N. Sobral, K.R. Sankaran, Synthesis, characterization and excellent catalytic activity of modified ZnO photocatalyst for RR 120 dye degradation under UV-A and solar light illumination, J. Water Process Eng., 13 (2016) 6–15.
  36. S. Fu, W. Yuan, Y.H. Yan, H.P. Liu, X.K. Shi, F.Y. Zhao, J. Zhou, Highly efficient visible-light photoactivity of Z-scheme MoS2/Ag2CO3 photocatalysts for organic pollutants degradation and bacterial inactivation, J. Environ. Manage., 252 (2019) 109654, https://doi.org/10.1016/j.jenvman.2019.109654.
  37. P.Y. Ayekoe, D. Robert, D.L. Goné, Facile synthesis of TiO2/Bi2O3 heterojunctions for the photocatalytic degradation of water contaminants, Res. Rev. J. Chem., 6 (2017) 77–83.
  38. M. Malligavathy, S. Iyyapushpam, S.T. Nishanthi, D.P. Padiyan, Photoreduction synthesis of silver on Bi2O3/TiO2 nanocomposites and their catalytic activity for the degradation of methyl orange, J. Mater. Sci. - Mater. Electron., 28 (2017) 18307–18321.
  39. M.S. Adly, Sh.M. El-Dafrawy, S.A. El-Hakam, Application of nanostructured graphene oxide/titanium dioxide composites for photocatalytic degradation of rhodamine B and acid green 25 dyes, J. Mater. Res. Technol., 8 (2019) 5610–5622.
  40. B. Rahimi, N. Jafari, A. Abdolahnejad, H. Farrokhzadeh, A. Ebrahimi, Application of efficient photocatalytic process using a novel BiVO/TiO2-NaY zeolite composite for removal of acid orange 10 dye in aqueous solutions: Modeling by response surface methodology (RSM), J. Environ. Chem. Eng., 7 (2019) 103253, https://doi.org/10.1016/j.jece.2019.103253.
  41. B. Mirza Hedayat, M. Noorisepehr, E. Dehghanifard, A. Esrafili, R. Norozi, Evaluation of photocatalytic degradation of 2,4-dinitrophenol from synthetic wastewater using Fe3O4@SiO2@TiO2/rGO magnetic nanoparticles, J. Mol. Liq., 264 (2018) 571–578.
  42. B. Rahimi, A. Ebrahimi, Photocatalytic process for total arsenic removal using an innovative BiVO4/TiO2/LED system from aqueous solution: optimization by response surface methodology (RSM), J. Taiwan Inst. Chem. Eng., 101 (2019) 64–79.
  43. Y.H. Jiang, Y.Y. Luo, Z.Y. Lu, P.W. Huo, W.N. Xing, M. He, J.Q. Li, Y.S. Yan, Influence of inorganic ions and pH on the photodegradation of 1-methylimidazole-2-thiol with TiO2 photocatalyst based on magnetic multi-walled carbon nanotubes, Bull. Korean Chem. Soc., 35 (2014) 76–82.
  44. E. Kudlek, M. Dudziak, J. Bohdziewicz, Influence of inorganic ions and organic substances on the degradation of pharmaceutical compound in water matrix, Water, 8 (2016) 532, https://doi.org/10.3390/w8110532.
  45. T.H. Zhang, Y.J. Liu, Y.D. Rao, X.P. Li, D.L. Yuan, S.F. Tang, Q.X. Zhao, Enhanced photocatalytic activity of TiO2 with acetylene black and persulfate for degradation of tetracycline hydrochloride under visible light, Chem. Eng. J., 384 (2020) 123350, https://doi.org/10.1016/j.cej.2019.123350.
  46. B. Rahimi, A. Ebrahimi, N. Mansouri, N. Hosseini, Photodegradation process for the removal of acid orange 10 using titanium dioxide and bismuth vanadate from aqueous solution, Global J. Environ. Sci. Manage., 5 (2019) 43–60.
  47. G. Sreelatha, V. Ageetha, J. Parmar, P. Padmaja, Equilibrium and kinetic studies on reactive dye adsorption using palm shell powder (an agrowaste) and chitosan, J. Chem. Eng. Data, 56 (2010) 35–42.
  48. Y.Q. Tan, M. Chen, Y.M. Hao, High efficient removal of Pb(II) by amino-functionalized Fe3O4 magnetic nano-particles, Chem. Eng. J., 191 (2012) 104–111.
  49. B. Krishnakumar, K. Selvam, R. Velmurugan, M. Swaminathan, Influence of operational parameters on photodegradation of Acid Black 1 with ZnO, Desal. Water Treat., 24 (2010) 132–139.
  50. C.Y. Wang, Q.J. Zhu, C.T. Gu, X.P. Luo, C.L. Yu, M. Wu, Photocatalytic degradation of two different types of dyes by synthesized La/Bi2WO6, RSC Adv., 6 (2016) 85852–85859.
  51. A. Siddiqa, D. Masih, D. Anjum, M. Siddiq, Cobalt and sulfur co-doped nano-size TiO2 for photodegradation of various dyes and phenol, J. Environ. Sci., 37 (2015) 100–109.
  52. H. Eskandarloo, A. Badiei, M.A. Behnajady, Study of the effect of additives on the photocatalytic degradation of a triphenylmethane dye in the presence of immobilized TiO2/NiO nanoparticles: artificial neural network modeling, Ind. Eng. Chem. Res., 53 (2014) 6881–6895.
  53. C. Hu, J.C. Yu, Z. Hao, P.K. Wong, Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes, Appl. Catal., B, 46 (2003) 35–47.
  54. A. Asghar, A.A.A. Raman, W.M.A.W. Daud, Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review, J. Cleaner Prod., 87 (2015) 826–838.
  55. C. Lai, M.M. Zhang, B.S. Li, D.L. Huang, G.M. Zeng, L. Qin, X.G. Liu, H. Yi, M. Cheng, L. Li, Z. Chen, L. Chen, Fabrication of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with enhanced photocatalytic activity for Ciprofloxacin degradation and mechanism insight, Chem. Eng. J., 358 (2019) 891–902.
  56. S. Karthikeyan, A. Titus, A. Gnanamani, A.B. Mandal, G. Sekaran, Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes, Desalination, 281 (2011) 438–445.
  57. P. Borthakur, P.K. Boruah, N. Hussain, Y. Silla, M.R. Das, Specific ion effect on the surface properties of Ag/reduced graphene oxide nanocomposite and its influence on photocatalytic efficiency towards azo dye degradation, Appl. Surf. Sci., 423 (2017) 752–761.
  58. X.J. Yan, R.L. Bao, S.L. Yu, Effect of inorganic ions on the photocatalytic degradation of humic acid, Russ. J. Phys. Chem. A, 86 (2012) 1318–1325.
  59. G.D. Fan, R.S. Ning, J. Luo, J. Zhang, P. Hua, Y. Guo, Z.S. Li, Visible-light-driven photocatalytic degradation of naproxen by Bi-modified titanate nanobulks: Synthesis, degradation pathway and mechanism, J. Photochem. Photobiol., A, 386 (2020) 112108, https://doi.org/10.1016/j.jphotochem.2019.112108.
  60. T.S. Rad, A. Khataee, S.R. Pouran, Synergistic enhancement in photocatalytic performance of Ce(IV) and Cr(III) co-substituted magnetite nanoparticles loaded on reduced graphene oxide sheets, J. Colloid Interface Sci., 528 (2018) 248–262.
  61. V. Matthaiou, Z. Frontistis, A. Petala, M. Solakidou, Y. Deligiannakis, G.N. Angelopoulos, D. Mantzavinos, Utilization of raw red mud as a source of iron activating the persulfate oxidation of paraben, Process Saf. Environ. Prot., 119 (2018) 311–319.
  62. Y.W. Gao, S.M. Li, Y.X. Li, L.Y. Yao, H. Zhang, Accelerated photocatalytic degradation of organic pollutant over metalorganic framework MIL-53 (Fe) under visible LED light mediated by persulfate, Appl. Catal., B, 202 (2017) 165–174.