References
- T.R. Waghmode, M.B. Kurade, R.T. Sapkal, C.H. Bhosale,
B.-H. Jeon, S.P. Govindwar, Sequential photocatalysis and
biological treatment for the enhanced degradation of the
persistent azo dye methyl red, J. Hazard. Mater., 371 (2019)
115–122.
- B. Boutra, M. Trari, Solar photodegradation of a textile azo
dye using synthesized ZnO/bentonite, Water Sci. Technol.,
75 (2017) 1211–1220.
- P. Mondal, S. Baksi, D. Bose, Study of environmental issues in
textile industries and recent wastewater treatment technology,
World Sci. News, 61 (2017) 98–109.
- C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles
as solar photocatalysts: synthesis, mechanisms and
applications, Renewable Sustainable Energy Rev., 81 (2018)
536–551.
- A.H. Ali, S. Kapoor, S.K. Kansal, Studies on the photocatalytic
decolorization of pararosanilne chloride dye and its simulated
dyebath effluent, Desal. Water Treat., 25 (2011) 268–275.
- J.G. Wang, P. Zhang, X. Li, J. Zhu, H.X. Li, Synchronical
pollutant degradation and H2 production on a Ti3+-doped TiO2
visible photocatalyst with dominant (0 0 1) facets, Appl. Catal.,
B, 134 (2013) 198–204.
- H. Liu, X.N. Dong, X.C. Wang, C.C. Sun, J.Q. Li, Z.F. Zhu,
A green and direct synthesis of graphene oxide encapsulated
TiO2 core/shell structures with enhanced photoactivity, Chem.
Eng. J., 230 (2013) 279–285.
- S.Z. You, Y. Hu, X.C. Liu, C.H. Wei, Synergetic removal of
Pb(II) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2
composite photocatalyst under visible light, Appl. Catal., B,
232 (2018) 288–298.
- B. Neppolian, L. Ciceri, C.L. Bianchi, F. Grieser, M. Ashokkumar,
Sonophotocatalytic degradation of 4-chlorophenol using Bi2O3/TiZrO4 as a visible light responsive photocatalyst, Ultrason.
Sonochem., 18 (2011) 135–139.
- V. Vaiano, G. Iervolino, L. Rizzo, Cu-doped ZnO as efficient
photocatalyst for the oxidation of arsenite to arsenate under
visible light, Appl. Catal., B, 238 (2018) 471–479.
- J.H. Feng, Y.Y. Li, Z.Q. Gao, H. Lv, X.B. Zhang, D.W. Fan,
Q. Wei, Visible-light driven label-free photoelectrochemical
immunosensor based on TiO2/S-BiVO4@Ag2S nanocomposites
for sensitive detection OTA, Biosens. Bioelectron., 99 (2018)
14–20.
- V. Vaiano, O. Sacco, D. Sannino, Electric energy saving in
photocatalytic removal of crystal violet dye through the
simultaneous use of long-persistent blue phosphors, nitrogendoped
TiO2 and UV-light emitting diodes, J. Cleaner Prod.,
210 (2019) 1015–1021.
- L. Das, U. Maity, J.K. Basu, The photocatalytic degradation of
carbamazepine and prediction by artificial neural networks,
Process Saf. Environ. Prot., 92 (2014) 888–895.
- S. Agarwal, I. Tyagi, V.K. Gupta, M. Ghaedi, M. Masoomzade,
A.M. Ghaedi, B. Mirtamizdoust, Kinetics and thermodynamics
of methyl orange adsorption from aqueous solutions—artificial
neural network-particle swarm optimization modeling, J. Mol.
Liq., 218 (2016) 354–362.
- D. Podstawczyk, A. Witek-Krowiak, A. Dawiec, A. Bhatnagar,
Biosorption of copper(II) ions by flax meal: empirical modeling
and process optimization by response surface methodology
(RSM) and artificial neural network (ANN) simulation, Ecol.
Eng., 83 (2015) 364–379.
- S. Mandal, S. Mahapatra, R.K. Patel, Enhanced removal of
Cr(VI) by cerium oxide polyaniline composite: optimization
and modeling approach using response surface methodology
and artificial neural networks, J. Environ. Chem. Eng., 3 (2015)
870–885.
- L.F. Yin, J.F. Niu, Z.Y. Shen, J. Chen, Mechanism of reductive
decomposition of pentachlorophenol by Ti-doped β-Bi2O3
under visible light irradiation, Environ. Sci. Technol., 44 (2010)
5581–5586.
- C. Karunakaran, P. Magesan, P. Gomathisankar, Photocatalytic
activity of sol–gel derived Bi2O3-TiO2 nanocomposite, Mater.
Sci. Forum, 712 (2012) 73–83.
- S. Sood, S.K. Mehta, A.S.K. Sinha, S.K. Kansal, Bi2O3/TiO2
heterostructures: synthesis, characterization and their application
in solar light mediated photocatalyzed degradation
of an antibiotic, ofloxacin, Chem. Eng. J., 290 (2016) 45–52.
- J.L. Wang, X.D. Yang, K. Zhao, P.F. Xu, L.B. Zong, R.B. Yu,
D. Wang, J.X. Deng, J. Chen, X.R. Xing, Precursor-induced
fabrication of β-Bi2O3 microspheres and their performance as
visible-light-driven photocatalysts, J. Mater. Chem. A, 1 (2013)
9069–9074.
- A. Habibi-Yangjeh, S. Feizpoor, D. Seifzadeh, S. Ghosh,
Improving visible-light-induced photocatalytic ability of TiO22
through coupling with Bi3O4Cl and carbon dot nanoparticles,
Sep. Purif. Technol., 238 (2020) 116404, https://doi.org/10.1016/j.
seppur.2019.116404.
- P.Y. Ayekoe, D. Robert, D.L. Goné, Preparation of effective TiO2/Bi2O3 photocatalysts for water treatment, Environ. Chem. Lett.,
14 (2016) 387–393.
- O. Bechambi, S. Sayadi, W. Najjar, Photocatalytic degradation
of bisphenol A in the presence of C-doped ZnO: effect of
operational parameters and photodegradation mechanism,
J. Ind. Eng. Chem., 32 (2015) 201–210.
- A. Uheida, A. Mohamed, M. Belaqziz, W.S. Nasser, Photocatalytic
degradation of Ibuprofen, Naproxen, and Cetirizine
using PAN-MWCNT nanofibers crosslinked TiO2-NH2 nanoparticles
under visible light irradiation, Sep. Purif. Technol.,
212 (2019) 110–118.
- D. Sud, A. Syal, Investigations on the phase transformation,
optical characteristics, and photocatalytic activity of synthesized
heterostructured nanoporous Bi2O3-TiO2, J. Chin. Chem. Soc.,
63 (2016) 776–783.
- V.K. Gupta, R. Jain, A. Mittal, T.A. Saleh, A. Nayak, S. Agarwal,
S. Sikarwar, Photo-catalytic degradation of toxic dye amaranth
on TiO2/UV in aqueous suspensions, Mater. Sci. Eng., C,
32 (2012) 12–17.
- R. Abazari, A.R. Mahjoub, G. Salehi, Preparation of amine
functionalized g-C3N4@H/SMOF NCs with visible light
photocatalytic characteristic for 4-nitrophenol degradation
from aqueous solution, J. Hazard. Mater., 365 (2019) 921–931.
- Z.J. Cheng, L. Zhang, X. Guo, X.H. Jiang, T. Li, Adsorption
behavior of direct red 80 and Congo red onto activated carbon/surfactant: process optimization, kinetics and equilibrium,
Spectrochim. Acta, Part A, 137 (2015) 1126–1143.
- A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J.L. Zhang,
Comparative studies of operational parameters of degradation
of azo dyes in visible light by highly efficient WOx/TiO2
photocatalyst, J. Hazard. Mater., 177 (2010) 781–791.
- P. Nuengmatcha, P. Porrawatkul, S. Chanthai, P. Sricharoen,
N. Limchoowong, Enhanced photocatalytic degradation of
methylene blue using Fe2O3/graphene/CuO nanocomposites
under visible light, J. Environ. Chem. Eng., 7 (2019) 103438,
https://doi.org/10.1016/j.jece.2019.103438.
- S. Fakhravar, M. Farhadian, S. Tangestaninejad, Excellent
performance of a novel dual Z-scheme Cu2S/Ag2S/BiVO4
heterostructure in metronidazole degradation in batch and
continuous systems: Immobilization of catalytic particles on
α-Al2O3 fiber, Appl. Surf. Sci., 505 (2020) 144599, https://doi.
org/10.1016/j.apsusc.2019.144599.
- L. Pirinejad, A. Maleki, B. Shahmoradi, H. Daraei,
J.-K. Yang, S.-M. Lee, Synthesis and application of Fe-N-Cr-TiO2
nanocatalyst for photocatalytic degradation of Acid Black 1
under LED light irradiation, J. Mol. Liq., 279 (2019) 232–240.
- V. Barahimi, H. Moghimi, R.A. Taheri, Cu doped TiO2-Bi2O3
nanocomposite for degradation of azo dye in aqueous solution:
process modeling and optimization using central composite
design, J. Environ. Chem. Eng., 7 (2019) 103078, https://doi.
org/10.1016/j.jece.2019.103078.
- M.H. Sayadi, S. Sobhani, H. Shekari, Photocatalytic degradation
of azithromycin using GO@Fe3O4/ZnO/SnO2 nanocomposites,
J. Cleaner Prod., 232 (2019) 127–136.
- A. Kumar, B. Subash, B. Krishnakumar, A.J.F.N. Sobral,
K.R. Sankaran, Synthesis, characterization and excellent
catalytic activity of modified ZnO photocatalyst for RR 120 dye
degradation under UV-A and solar light illumination, J. Water
Process Eng., 13 (2016) 6–15.
- S. Fu, W. Yuan, Y.H. Yan, H.P. Liu, X.K. Shi, F.Y. Zhao, J. Zhou,
Highly efficient visible-light photoactivity of Z-scheme MoS2/Ag2CO3 photocatalysts for organic pollutants degradation and
bacterial inactivation, J. Environ. Manage., 252 (2019) 109654,
https://doi.org/10.1016/j.jenvman.2019.109654.
- P.Y. Ayekoe, D. Robert, D.L. Goné, Facile synthesis of TiO2/Bi2O3
heterojunctions for the photocatalytic degradation of water
contaminants, Res. Rev. J. Chem., 6 (2017) 77–83.
- M. Malligavathy, S. Iyyapushpam, S.T. Nishanthi, D.P. Padiyan,
Photoreduction synthesis of silver on Bi2O3/TiO2 nanocomposites
and their catalytic activity for the degradation of methyl
orange, J. Mater. Sci. - Mater. Electron., 28 (2017) 18307–18321.
- M.S. Adly, Sh.M. El-Dafrawy, S.A. El-Hakam, Application of
nanostructured graphene oxide/titanium dioxide composites
for photocatalytic degradation of rhodamine B and acid green
25 dyes, J. Mater. Res. Technol., 8 (2019) 5610–5622.
- B. Rahimi, N. Jafari, A. Abdolahnejad, H. Farrokhzadeh,
A. Ebrahimi, Application of efficient photocatalytic process
using a novel BiVO/TiO2-NaY zeolite composite for removal
of acid orange 10 dye in aqueous solutions: Modeling by
response surface methodology (RSM), J. Environ. Chem.
Eng., 7 (2019) 103253, https://doi.org/10.1016/j.jece.2019.103253.
- B. Mirza Hedayat, M. Noorisepehr, E. Dehghanifard, A. Esrafili,
R. Norozi, Evaluation of photocatalytic degradation of
2,4-dinitrophenol from synthetic wastewater using Fe3O4@SiO2@TiO2/rGO magnetic nanoparticles, J. Mol. Liq., 264 (2018)
571–578.
- B. Rahimi, A. Ebrahimi, Photocatalytic process for total
arsenic removal using an innovative BiVO4/TiO2/LED system
from aqueous solution: optimization by response surface
methodology (RSM), J. Taiwan Inst. Chem. Eng., 101 (2019)
64–79.
- Y.H. Jiang, Y.Y. Luo, Z.Y. Lu, P.W. Huo, W.N. Xing, M. He,
J.Q. Li, Y.S. Yan, Influence of inorganic ions and pH on
the photodegradation of 1-methylimidazole-2-thiol with
TiO2 photocatalyst based on magnetic multi-walled carbon
nanotubes, Bull. Korean Chem. Soc., 35 (2014) 76–82.
- E. Kudlek, M. Dudziak, J. Bohdziewicz, Influence of
inorganic ions and organic substances on the degradation of
pharmaceutical compound in water matrix, Water, 8 (2016)
532, https://doi.org/10.3390/w8110532.
- T.H. Zhang, Y.J. Liu, Y.D. Rao, X.P. Li, D.L. Yuan, S.F. Tang,
Q.X. Zhao, Enhanced photocatalytic activity of TiO2 with
acetylene black and persulfate for degradation of tetracycline
hydrochloride under visible light, Chem. Eng. J., 384 (2020)
123350, https://doi.org/10.1016/j.cej.2019.123350.
- B. Rahimi, A. Ebrahimi, N. Mansouri, N. Hosseini, Photodegradation
process for the removal of acid orange 10 using
titanium dioxide and bismuth vanadate from aqueous
solution, Global J. Environ. Sci. Manage., 5 (2019) 43–60.
- G. Sreelatha, V. Ageetha, J. Parmar, P. Padmaja, Equilibrium
and kinetic studies on reactive dye adsorption using palm
shell powder (an agrowaste) and chitosan, J. Chem. Eng. Data,
56 (2010) 35–42.
- Y.Q. Tan, M. Chen, Y.M. Hao, High efficient removal of Pb(II)
by amino-functionalized Fe3O4 magnetic nano-particles,
Chem. Eng. J., 191 (2012) 104–111.
- B. Krishnakumar, K. Selvam, R. Velmurugan, M. Swaminathan,
Influence of operational parameters on photodegradation of
Acid Black 1 with ZnO, Desal. Water Treat., 24 (2010) 132–139.
- C.Y. Wang, Q.J. Zhu, C.T. Gu, X.P. Luo, C.L. Yu, M. Wu,
Photocatalytic degradation of two different types of dyes by
synthesized La/Bi2WO6, RSC Adv., 6 (2016) 85852–85859.
- A. Siddiqa, D. Masih, D. Anjum, M. Siddiq, Cobalt and sulfur
co-doped nano-size TiO2 for photodegradation of various dyes
and phenol, J. Environ. Sci., 37 (2015) 100–109.
- H. Eskandarloo, A. Badiei, M.A. Behnajady, Study of the
effect of additives on the photocatalytic degradation of a
triphenylmethane dye in the presence of immobilized TiO2/NiO nanoparticles: artificial neural network modeling, Ind.
Eng. Chem. Res., 53 (2014) 6881–6895.
- C. Hu, J.C. Yu, Z. Hao, P.K. Wong, Effects of acidity and
inorganic ions on the photocatalytic degradation of different
azo dyes, Appl. Catal., B, 46 (2003) 35–47.
- A. Asghar, A.A.A. Raman, W.M.A.W. Daud, Advanced oxidation
processes for in-situ production of hydrogen peroxide/hydroxyl
radical for textile wastewater treatment: a review, J. Cleaner
Prod., 87 (2015) 826–838.
- C. Lai, M.M. Zhang, B.S. Li, D.L. Huang, G.M. Zeng, L. Qin,
X.G. Liu, H. Yi, M. Cheng, L. Li, Z. Chen, L. Chen, Fabrication
of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with
enhanced photocatalytic activity for Ciprofloxacin degradation
and mechanism insight, Chem. Eng. J., 358 (2019) 891–902.
- S. Karthikeyan, A. Titus, A. Gnanamani, A.B. Mandal,
G. Sekaran, Treatment of textile wastewater by homogeneous
and heterogeneous Fenton oxidation processes, Desalination,
281 (2011) 438–445.
- P. Borthakur, P.K. Boruah, N. Hussain, Y. Silla, M.R. Das, Specific
ion effect on the surface properties of Ag/reduced graphene
oxide nanocomposite and its influence on photocatalytic
efficiency towards azo dye degradation, Appl. Surf. Sci.,
423 (2017) 752–761.
- X.J. Yan, R.L. Bao, S.L. Yu, Effect of inorganic ions on the
photocatalytic degradation of humic acid, Russ. J. Phys. Chem.
A, 86 (2012) 1318–1325.
- G.D. Fan, R.S. Ning, J. Luo, J. Zhang, P. Hua, Y. Guo, Z.S. Li,
Visible-light-driven photocatalytic degradation of naproxen
by Bi-modified titanate nanobulks: Synthesis, degradation
pathway and mechanism, J. Photochem. Photobiol., A, 386 (2020)
112108, https://doi.org/10.1016/j.jphotochem.2019.112108.
- T.S. Rad, A. Khataee, S.R. Pouran, Synergistic enhancement in
photocatalytic performance of Ce(IV) and Cr(III) co-substituted
magnetite nanoparticles loaded on reduced graphene oxide
sheets, J. Colloid Interface Sci., 528 (2018) 248–262.
- V. Matthaiou, Z. Frontistis, A. Petala, M. Solakidou,
Y. Deligiannakis, G.N. Angelopoulos, D. Mantzavinos,
Utilization of raw red mud as a source of iron activating the
persulfate oxidation of paraben, Process Saf. Environ. Prot., 119
(2018) 311–319.
- Y.W. Gao, S.M. Li, Y.X. Li, L.Y. Yao, H. Zhang, Accelerated
photocatalytic degradation of organic pollutant over metalorganic
framework MIL-53 (Fe) under visible LED light
mediated by persulfate, Appl. Catal., B, 202 (2017) 165–174.