References

  1. O.F. Lopes, V.R. Mendonça, A. Umar, C.R. Oliveira, Alto Desempenho Fotocatalítico do ZnSn(OH)6 na Degradação da Rodamine B, M.A. Martins, O.B.G. de Assis, C. Ribeiro, L.H.C. Mattoso, Eds., Workshop da Rede de Nanotecnologia Aplicada ao Agronegócio, 7, São Paulo, Brazil, 2013, Embrapa Instrumentação: São Carlos, Brazil, 2013, pp. 389–391. Available at: http://ainfo.cnptia.embrapa.br/digital/bitstream/ item/88411/1/Proci-13.00084.pdf
  2. F.F. Brites, N.R.C. Machado, V.S. Santana, Effect of support on the photocatalytic degradation of textile effluents using Nb2O5 and ZnO: photocatalytic degradation of textile dye, Top. Catal., 54 (2011) 264–269, https://doi.org/10.1007/s11244-011-9657-2.
  3. T.M.O. Ruellas, L.O.O. Peçanha, G.H.S. Domingos, S.C. Maestrelli, T.R. Giraldi, Photodegradation of Rhodamine B catalyzed by ZnO pellets, Cerâmica, 65 (2019) 47–53.
  4. P. Gonçalves, R. Bertholdo, J.A. Dias, S.C. Maestrelli, T.R. Giraldi, Evaluation of the photocatalytic potential of TiO2 and ZnO obtained by different wet chemical methods, Mater. Res., 20 (2017) 181–189.
  5. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review, Water Res., 88 (2015) 428–448.
  6. P.C.S. Bezerra, R.P. Cavalcante, A. Garcia, H. Wender, M.A.U. Martines, G.A. Casagrande, J. Giménez, P. Marco, S.C. Oliveira, A.M. Junior, Synthesis, characterization, and photocatalytic activity of pure and N-, B-, or Ag-doped TiO2, J. Braz. Chem. Soc., 28 (2017) 1788–1802.
  7. A. Pipi, G. Byzynski, L. Ruotol, Photocatalytic activity and RNO dye degradation of Nitrogen-doped TiO2 prepared by ionothermal synthesis, Mater. Res., 20 (2017) 628–638.
  8. S. Matsuzawa, C. Maneerat, Y. Hayata, T. Hirakawa, N. Negishi, T. Sano, Immobilization of TiO2 nanoparticles on polymeric substrates by using electrostatic interaction in the aqueous phase, Appl. Catal. B, 83 (2008) 39–45.
  9. L.R.P. Araújo, R.P.S. Dutra, Obtaining and analysis of porous ceramic with the incorporation of organic products to the ceramic body, Cerâmica, 48 (2002) 223–230.
  10. P. Colombo, E. Bernardo, L. Biasetto, Novel microcellular ceramics from a silicone resin, J. Am. Ceram. Soc., 87 (2004) 152–154.
  11. D.M. Liu, Preparation and characterization of porous hydroxyapatite bioceramic via a slip-casting route, Ceram. Int., 28 (1998) 441–446.
  12. A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler, Processing routes to macroporous ceramics: a review, J. Am. Ceram. Soc., 89 (2006) 1771–1789.
  13. Z.Y. Deng, T. Fukasawa, M. Ando, G.J. Zhang, T. Ohji, Microstructure and mechanical properties of porous alumina ceramics fabricated by decomposition of aluminum hydroxide, J. Am. Ceram. Soc., 84 (2001) 2638–2644.
  14. M.V. Carlesso, R.O. Giacomelli, S. Günter, S. Kroll, K. Rezwan, D. Koch, S. Odenbach, Near-net-shaped porous ceramics for potential sound absorption applications at high temperatures, J. Am. Ceram. Soc., 96 (2013) 710–718.
  15. E. Gregorová, W. Pabst, Process control and optimized preparation of porous alumina ceramics by starch consolidation casting, J. Eur. Ceram. Soc., 31 (2011) 2073–2081.
  16. P. Colombo, Conventional and novel processing methods for cellular ceramics, Philos. Trans. R. Soc. A, 364 (2006) 109–124.
  17. D. Marrero-Lopez, D. Marreno-López, J.C. Ruiz-Morates, J. Peña-Martínez, J. Canales-Vázquez, P. Núnez, Preparation of thin layer materials with macroporous microstructure for SOFC applications, J. Solid State Chem., 181 (2008) 685–692.
  18. K. Prabhakaran, A. Melkeri, N.M. Gokhale, S.C. Sharma, Preparation of macroporous alumina ceramics using wheat particles as gelling and pore forming agent, Ceram. Int., 33 (2007) 77–81.
  19. I.W. Donald, Methods for improving the mechanical properties of oxide glasses, J. Mater. Sci., 24 (1989) 4177–4208.
  20. Brazilian Association of Technical Standards, NBR 9778: Hardened Cement Mortar and Concrete - Determination of Water Absorption by Immersion, Rio de Janeiro – Brazil, 1995, pp. 1–4
  21. D.F. Ferreira, SISVAR: a program for analysis and teaching of statistics, Symposium, 6 (2008) 36–41.
  22. S. Ye, M. Yan, X, Tan, J. Liang, G. Zheng, H. Wu, B. Song, C. Zhou, Y. Yang, H. Wang, Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light, Appl. Catal. B, 250 (2019) 78–88.
  23. Ü. Özgur, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys., 98 (2005) 041301/1 - 041301/103.
  24. T.M.O. Ruellas, L.O.O. Peçanha, G.H.S. Domingos, C.R. Sciena, J.O.D. Malafatti, E.C. Paris, S.C. Maestrelli, T.R. Giraldi, Zinc oxide pieces obtained by pressing and slip casting: physical, structural and photocatalytic properties, Environ. Technol., (2019) 1479–487X (in press).