References

  1. M.Y. Badi, A. Azari, H. Pasalari, A. Esrafili, M. Farzadkia, Modification of activated carbon with magnetic Fe3O4 nanoparticle composite for removal of ceftriaxone from aquatic solutions, J. Mol. Liq., 261 (2016) 146–154.
  2. H. Azarpira, Y. Mahdavi, O. Khaleghi, D. Balarak, Thermodynamic studies on the removal of metronidazole antibiotic by multi-walled carbon nanotubes, Pharm Lett., 8 (2016) 107–113.
  3. S. Abbasi, R. Foroutan, H. Esmaeili, F. Esmaeilzadeh, Preparation of activated carbon from worn tires for removal of Cu(II), Ni(II) and Co(II) ions from synthetic wastewater, Desal. Water Treat., 141 (2019) 269–278.
  4. M. Keshavarz, R. Foroutan, F. Papari, L. Bulgariu, H. Esmaeili, Synthesis of CaO/Fe2O3 nanocomposite as an efficient nanoadsorbent for the treatment of wastewater containing Cr(III), Sep. Sci. Technol., 11 (2020) 1–14.
  5. S. Nasseri, A.H. Mahvi, M. Seyedsalehi, K. Yaghmaeian, R. Nabizadeh, M. Alimohammadi, G.H. Safari, Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: effect of radical scavenger and water matrix, J. Mol. Liq., 241 (2017) 704–714.
  6. R. Rostamian, H. Behnejad, A comparative adsorption study of sulfamethoxazole onto graphene and graphene oxide nanosheets through equilibrium, kinetic and thermodynamic modeling, Process Saf. Environ. Prot., 102 (2016) 20–29.
  7. Z. Movasaghi, B. Yan, C. Niu, Adsorption of ciprofloxacin from water by pretreated oat hulls: equilibrium, kinetic, and thermodynamic studies, Ind. Crops Prod., 127 (2016) 237–250.
  8. Ö. Kerkez-Kuyumcu, Ş.S. Bayazit, M.A. Salam, Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets, J. Ind. Eng. Chem., 35 (2016) 198–205.
  9. E.-S.I. El-Shafey, H. Al-Lawati, A.S. Al-Sumri, Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets, J. Environ. Sci., 24 (2012) 1579–1586.
  10. C. de O. Carvalho, D.L.C. Rodrigues, É.C. Lima, C.S. Umpierres, D.F.C. Chaguezac, F.M. Machado, Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jerivá (Syagrus romanzoffiana), Environ. Sci. Pollut. Res. Int., 26 (2019) 4690–4702.
  11. S.T. Danalıoğlu, S.S. Bayazit, O.K. Kuyumcu, M.A. Salam, Efficient removal of antibiotics by a novel magnetic adsorbent: magnetic activated carbon/chitosan (MACC) nanocomposite, J. Mol. Liq., 240 (2017) 589–596.
  12. X. Zhu, D.C.W. Tsang, F. Chen, S.Y. Li, X. Yang, Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry, Environ. Technol., 36 (2015) 3094–3102.
  13. D.Y. Yin, Z.W. Xu, J. Shi, L. Shen, Z.X. He, Adsorption characteristics of ciprofloxacin on the schorl: kinetics, thermodynamics, effect of metal ion and mechanisms, J. Water Reuse Desal., 8 (2017) 350–359.
  14. A. Fakhri, S. Adami, Adsorption and thermodynamic study of Cephalosporins antibiotics from aqueous solution onto MgO nanoparticles, J. Taiwan Inst. Chem. Eng., 45 (2014) 1001–1006.
  15. N. Sharma, N. Dhiman, Kinetic and thermodynamic studies for ciprofloxacin hydrochloride adsorption from aqueous solution on CuO nanoparticles, Int. J. ChemTech Res., 10 (2017) 98–106.
  16. R. Ding, P.F. Zhang, M. Seredych, T.J. Bandosz, Removal of antibiotics from water using sewage sludge- and waste oil sludge-derived adsorbents, Water Res., 90 (2012) 40–6.
  17. D. Balarak, H. Azarpira, F.K. Mostafapour, Study of the adsorption mechanisms of cephalexin on to Azolla filiculoides, Pharm. Chem., 8 (2016) 114–121.
  18. M.J. Ahmed, S.K. Theydan, Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis, J. Taiwan Inst. Chem. Eng., 45 (2014) 219–226.
  19. K.-J. Choi, S.-G. Kim, S.-H. Kim, Removal of antibiotics by coagulation and granular activated carbon filtration, J. Hazard. Mater., 151 (2008) 38–43.
  20. T.X. Bui, H. Choi, Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15, J. Hazard. Mater., 168 (2009) 602–608.
  21. D. Balarak, F.K. Mostafapour, E. Bazrafshan, T.A. Saleh, Studies on the adsorption of amoxicillin on multi-wall carbon nanotubes, Water Sci. Technol., 75 (2017) 1599–1606.
  22. L.G. Ji, W. Chen, L. Duan, D.Q. Zhu, Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents, Environ. Sci. Technol., 43 (2009) 2322–2327.
  23. S.A.C. Carabineiro, T. Thavorn-amornsri, M.F.R. Pereira, P. Serp, J.L. Figueiredo, Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin, Catal. Today, 186 (2012) 29–34.
  24. V. Srivastava, Y.C. Sharma, M. Sillanpää, Application of response surface methodology for optimization of Co(II) removal from synthetic wastewater by adsorption on NiO nanoparticles, J. Mol. Liq., 211 (2015) 613–620.
  25. W.-T. Jiang, P.-H. Chang, Y.-S. Wang, Y. Tsai, J.-S. Jean, Z.H. Li, K. Krukowski, Removal of ciprofloxacin from water by birnessite, J. Hazard. Mater., 250 (2013) 362–369.
  26. L. Wang, G.C. Chen, C. Ling, J.F. Zhang, K. Szerlag, Adsorption of ciprofloxacin on to bamboo charcoal: effects of pH, salinity, cations, and phosphate, Environ. Prog. Sustainable Energy, 36 (2017) 1108–1115.
  27. U. Ashraf, B. Khan, Synthesis and characterization of NiO nanopowder by sol–gel method, Int. J. Sci. Res., 4 (2015) 2405–2408.
  28. S.K. Ashan, N. Ziaeifara, M. Khosravi, Sol–gel synthesis of Nio nanoparticles and investigation on adsorption capacity in the removal of Cr(VI) from aqueous solution, Orient. J. Chem., 32 (2016) 749–758.
  29. A.K. Rahardjo, M.J.J. Susanto, A. Kurniawan, N. Indraswati, S. Ismadji, Modified Ponorogo bentonite for the removal of ampicillin from wastewater, J. Hazard. Mater., 190 (2011) 1001–1008.
  30. H. Azarpira, D. Balarak, Rice husk as a biosorbent for antibiotic metronidazole removal: isotherm studies and model validation, Int. J. ChemTech Res., 9 (2016) 566–573.
  31. M. Brigante, P.C. Schulz, Remotion of the antibiotic tetracycline by titania and titania–silica composed material, J. Hazard. Mater., 192 (2011) 1597–1608.
  32. R. Ocampo-Pérez, J. Rivera-Utrilla, C. Gómez-Pacheco, M. Sánchez-Polo, J.J. López-Peñalver, Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase, Chem. Eng. J., 213 (2012) 88–96.
  33. I.O. Abdulsalam, H.I. Adegoke, F.A. Adekola, Batch sorption of ciprofloxacin on kaolinitic clay and nhematite composite: equilibrium and thermodynamics studies, Mor. J. Chem., 4 (2016) 384–424.
  34. A.H. Mahvi, F.K. Mostafapour, Biosorption of tetracycline from aqueous solution by Azolla filiculoides: equilibrium kinetic and thermodynamics studies, Fresenius Environ. Bull., 27 (2018) 5759–5767.
  35. L. Zhang, X.Y. Song, X.Y. Liu, L.J. Yang, F. Pan, J. Lv, Studies on the removal of tetracycline by multi-walled carbon nanotubes, Chem. Eng. J., 178 (2011) 26–33.
  36. P.-H. Chang, Z.H. Li, J.-S. Jean, W.-T. Jiang, C.-J. Wang, K.-H. Lin, Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite, Appl. Clay Sci., 67–68 (2012) 158–163.
  37. Y. Gao, Y. Li, L. Zhang, H. Huang, J.J. Hu, S.M. Shah, X.G. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interface Sci., 368 (2012) 540–546.
  38. L. Wang, G.C. Chen, G. Owens, J.F. Zhang, Enhanced antibiotic removal by the addition of bamboo charcoal during pig manure composting, RSC Adv., 6 (2016) 27575–27583.
  39. M.E. Parolo, M.C. Savini, J.M. Vallés, M.T. Baschini, M.J. Avena, Tetracycline adsorption on montmorillonite: pH and ionic strength effects, Appl. Clay Sci., 40 (2008) 179–186.
  40. I. Yahiaoui, F. Aissani-Benissad, F. Fourcade, A. Amrane, Removal of tetracycline hydrochloride from water based on direct anodic oxidation (Pb/PbO2 electrode) coupled to activated sludge culture, Chem. Eng. J., 221 (2013) 418–425.
  41. D. Balarak, F.K. Mostafapour, H. Azarpira, Adsorption isotherm studies of tetracycline antibiotics from aqueous solutions by maize stalks as a cheap biosorbent, Int. J. Pharm. Technol., 8 (2016) 16664–16675.
  42. N. Khoshnamvand, S. Ahmadi, F.K. Mostafapour, Kinetic and isotherm studies on ciprofloxacin an adsorption using magnesium oxide nanoparticles, J. Appl. Pharm. Sci., 7 (2017) 79–83.
  43. C.-L. Zhang, G.-L. Qiao, F. Zhao, Y. Wang, Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution, J. Mol. Liq., 163 (2011) 53–56.
  44. S. Rakshit, D. Sarkar, E.J. Elzinga, P. Punamiya, R. Datta, Mechanisms of ciprofloxacin removal by nano-sized magnetite, J. Hazard. Mater., 246 (2013) 221–226.
  45. W.R.D.N. Sousa, A.R. Oliveira, J.F.C. Filho, T.C.M. Dantas, A.G.D. Santos, V.P.S. Caldeira, G.E. Luz Jr., Ciprofloxacin adsorption on ZnO supported on SBA-15, Water Air Soil Pollut., 229 (2018) 1–12.
  46. S. Tamjidi, H. Esmaeili, B.K. Moghadas, Application of magnetic adsorbents for removal of heavy metals from wastewater: a review study, Mater. Res. Express, 6 (2019) 1–9.
  47. S. Ahmadi, A. Banach, F.K. Mostafapour, Study survey of cupric oxide nanoparticles in removal efficiency of ciprofloxacin antibiotic from aqueous solution: adsorption isotherm study, Desal. Water Treat., 89 (2017) 297–303.
  48. D. Balarak, E. Bazrafshan, Y. Mahdavi, S.-M. Lee. Kinetic, isotherms and thermodynamic studies in the removal of 2-chlorophenol from aqueous solution using modified rice straw, Desal. Water Treat., 63 (2017) 203–211.