References
- D.N. Lakdawalla, Economics of the pharmaceutical industry,
J. Econ. Lit., 56 (2018) 397–449.
- P.E. Stackelberg, J. Gibs, E.T. Furlong, M.T. Meyer, S.D. Zaugg,
R.L. Lippincott, Efficiency of conventional drinking-watertreatment
processes in removal of pharmaceuticals and other
organic compounds, Sci. Total Environ., 377 (2007) 255–272.
- B. Ferrari, N. Paxéus, R.L. Giudice, A. Pollio, J. Garric,
Ecotoxicological impact of pharmaceuticals found in treated
wastewaters: study of carbamazepine, clofibric acid, and
diclofenac, Ecotoxicol. Environ. Saf., 55 (2003) 359–370.
- M. Iqbal, Vicia faba bioassay for environmental toxicity
monitoring: a review, Chemosphere, 144 (2016) 785–802.
- M. Abbas, M. Adil, S. Ehtisham-ul-Haque, B. Munir, M. Yameen,
A. Ghaffar, G. Abbas Shar, M. Asif Tahir, M. Iqbal, Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment:
a review, Sci. Total Environ., 626 (2018) 1295–1309.
- M. Iqbal, M. Abbas, J. Nisar, A. Nazir, Bioassays based on higher
plants as excellent dosimeters for ecotoxicity monitoring:
a review, Chem. Int., 5 (2019) 1–80.
- M.J. Ahmed, Adsorption of non-steroidal anti-inflammatory
drugs from aqueous solution using activated carbons: review,
J. Environ. Manage., 190 (2017) 274–282.
- M. Bally, N. Dendukuri, B. Rich, L. Nadeau, A. Helin-Salmivaara,
E. Garbe, J.M. Brophy, Risk of acute myocardial infarction with
NSAIDs in real world use: bayesian meta-analysis of individual
patient data, BMJ, 357 (2017) j1909, doi: 10.1136/bmj.j1909.
- L. Feng, E.D. van Hullebusch, M.A. Rodrigo, G. Esposito,
M.A. Oturan, Removal of residual anti-inflammatory and
analgesic pharmaceuticals from aqueous systems by electrochemical
advanced oxidation processes. A review, Chem. Eng.
J., 228 (2013) 944–964.
- M. Sarker, J.Y. Song, S.H. Jhung, Adsorptive removal of antiinflammatory
drugs from water using graphene oxide/metalorganic
framework composites, Chem. Eng. J., 335 (2018) 74–81.
- A.M. Ali, L.K. Sydnes, W.M. Alarif, S.S. Al-Lihaibi,
M.M. Aly, S.G. Aanrud, R. Kallenborn, Diclofenac and two
of its photooxidation products in the marine environment:
their toxicology and occurrence in Red Sea coastal waters,
Environ. Chem. Ecotoxicol., 1 (2019) 19–25.
- K. Fent, A.A. Weston, D. Caminada, Ecotoxicology of human
pharmaceuticals, Aquatic Toxicol., 76 (2006) 122–159.
- A.T. Banks, H.J. Zimmerman, K.G. Ishak, J.G. Harter,
Diclofenac-associated hepatotoxicity: analysis of 180 cases
reported to the food and drug administration as adverse
reactions, Hepatology, 22 (1995) 820–827.
- J. Lindsay Oaks, M. Gilbert, M.Z. Virani, R.T. Watson,
C.U. Meteyer, B.A. Rideout, H.L. Shivaprasad, S. Ahmed,
M.J.I. Chaudhry, M. Arshad, S. Mahmood, A. Ali, A. Ahmed
Khan, Diclofenac residues as the cause of vulture population
decline in Pakistan, Nature, 427 (2004) 630–633.
- Y.Q. Leng, W.L. Guo, S.N. Su, C.L. Yi, L.T. Xing, Removal
of antimony(III) from aqueous solution by graphene as an
adsorbent, Chem. Eng. J., 211 (2012) 406–411.
- Y.J. Yoon, W.K. Park, T.-M. Hwang, D.H. Yoon, W.S. Yang,
J.-W. Kang, Comparative evaluation of magnetite–graphene
oxide and magnetite-reduced graphene oxide composite for
As(III) and As(V) removal, J. Hazard. Mater., 304 (2016) 196–204.
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun,
A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis
of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
- K. Gupta, O.P. Khatri, Reduced graphene oxide as an effective
adsorbent for removal of malachite green dye: plausible
adsorption pathways, J. Colloid Interface Sci., 501 (2017) 11–21.
- R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann,
A. Gagor, B. Feist, R. Wrzalik, Adsorption of divalent metal ions
from aqueous solutions using graphene oxide, Dalton Trans.,
42 (2013) 5682–5689.
- G.Z. Kyzas, E.A. Deliyanni, D.N. Bikiaris, A.C. Mitropoulos,
Graphene composites as dye adsorbents: review, Chem. Eng.
Res. Des., 129 (2018) 75–88.
- J. Wang, B.L. Chen, Adsorption and coadsorption of organic
pollutants and a heavy metal by graphene oxide and reduced
graphene materials, Chem. Eng. J., 281 (2015) 379–388.
- A. Carmalin Sophia, E.C. Lima, N. Allaudeen, S. Rajan,
Application of graphene based materials for adsorption of
pharmaceutical traces from water and wastewater-a review,
Desal. Water Treat., 57 (2016) 27573–27586.
- P.K. Boruah, D.J. Borah, J. Handique, P. Sharma, P. Sengupta,
M.R. Das, Facile synthesis and characterization of Fe3O4
nanopowder and Fe3O4/reduced graphene oxide nanocomposite
for methyl blue adsorption: a comparative study, J. Environ.
Chem. Eng., 3 (2015) 1974–1985.
- L.A. Chacra, M.A. Sabri, T.H. Ibrahim, M.I. Khamis,
N.M. Hamdan, S. Al-Asheh, M. AlRefai, C. Fernandez,
Application of graphene nanoplatelets and graphene magnetite
for the removal of emulsified oil from produced water,
J. Environ. Chem. Eng., 6 (2018) 3018–3033.
- P.A. Webb, Introduction to Chemical Adsorption Analytical
Techniques and their Applications to Catalysis, MIC Technical
Publications, Micromeritics Instrument Corp., Norcross,
Georgia 30093, 2003.
- A. Tayyebi, M. Outokesh, Supercritical synthesis of a magnetitereduced
graphene oxide hybrid with enhanced adsorption
properties toward cobalt & strontium ions, RSC Adv., 6 (2016)
13898–13913.
- J.C. Moreno, R. Gómez, L. Giraldo, Removal of Mn, Fe, Ni and
Cu ions from wastewater using cow bone charcoal, Materials,
3 (2010) 452–466.
- N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and
interpretation of adsorption isotherms, J. Chem., 2017 (2017)
1–11, https://doi.org/10.1155/2017/3039817.
- H.R. Wei, S.B. Deng, Q. Huang, Y. Nie, B. Wang, J. Huang,
G. Yu, Regenerable granular carbon nanotubes/alumina hybrid
adsorbents for diclofenac sodium and carbamazepine removal
from aqueous solution, Water Res., 47 (2013) 4139–4147.
- Z. Hasan, N.A. Khan, S.H. Jhung, Adsorptive removal of
diclofenac sodium from water with Zr-based metal–organic
frameworks, Chem. Eng. J., 284 (2016) 1406–1413.
- C. Saucier, M.A. Adebayo, E.C. Lima, R. Cataluña, P.S. Thue,
L.D.T. Prola, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan,
G.L. Dotto, Microwave-assisted activated carbon from cocoa
shell as adsorbent for removal of sodium diclofenac and
nimesulide from aqueous effluents, J. Hazard. Mater., 289
(2015) 18–27.
- A. Khan, J. Wang, J. Li, X.X. Wang, Z.S. Chen, A. Alsaedi,
T. Hayat, Y.T. Chen, X.K. Wang, The role of graphene oxide
and graphene oxide-based nanomaterials in the removal of
pharmaceuticals from aqueous media: a review, Environ. Sci.
Pollut. Res., 24 (2017) 7938–7958.
- I.M. Jauris, C.F. Matos, C. Saucier, E.C. Lima, A.J.G. Zarbin,
S.B. Fagan, F.M. Machado, I. Zanella, Adsorption of sodium
diclofenac on graphene: a combined experimental and
theoretical study, Phys. Chem. Chem. Phys., 18 (2016) 1526–1536.
- B.Y.Z. Hiew, L.Y. Lee, K.C. Lai, S.Y. Gan, S. Thangalazhy-
Gopakumar, G.-T. Pan, T. Chung-KuangYang, Adsorptive
decontamination of diclofenac by three-dimensional graphenebased
adsorbent: response surface methodology, adsorption
equilibrium, kinetic and thermodynamic studies, Environ. Res.,
168 (2019) 241–253.
- K.-Y.A. Lin, H.T. Yang, W.-D. Lee, Enhanced removal of
diclofenac from water using a zeolitic imidazole framework
functionalized with cetyltrimethylammonium bromide (CTAB),
RSC Adv., 5 (2015) 81330–81340.
- X. Hu, Z. Cheng, Removal of diclofenac from aqueous solution
with multi-walled carbon nanotubes modified by nitric acid,
Chin. J. Chem. Eng., 23 (2015) 1551–1556.
- S. Larous, A.-H. Meniai, Adsorption of Diclofenac from aqueous
solution using activated carbon prepared from olive stones,
Int. J. Hydrogen Energy, 41 (2016) 10380–10390.
- L.A. Al-Khateeb, S. Almotiry, M.A. Salam, Adsorption of
pharmaceutical pollutants onto graphene nanoplatelets,
Chem. Eng. J., 248 (2014) 191–199.
- T. Mukoko, M. Mupa, U. Guyo, F. Dziike, Preparation of rice
hull activated carbon for the removal of selected pharmaceutical
waste compounds in hospital effluent, J. Environ. Anal. Toxicol.,
S7 (2015) 008, doi: 10.4172/2161-0525.S7-008.
- S. Wong, Y.J. Lee, N. Ngadi, I.M. Inuwa, N.B. Mohamed,
Synthesis of activated carbon from spent tea leaves for aspirin
removal, Chin. J. Chem. Eng., 26 (2018) 1003–1011.
- K. Mphahlele, M.S. Onyango, S.D. Mhlanga, Adsorption of
aspirin and paracetamol from aqueous solution using Fe/NCNT/β-cyclodextrin nanocomopsites synthesized via a benign
microwave assisted method, J. Environ. Chem. Eng., 3 (2015)
2619–2630.
- S.-H. Lee, O.H. Lin, R.-A. Doong, Design of size-tunable
molecularly imprinted polymer for selective adsorption of
acetaminophen, Clean Technol. Environ. Policy, 19 (2017)
243–250.
- A. Azman, N. Ngadi, D.K.A. Zaini, M. Jusoh, Z. Mohamad,
A. Arsad, Effect of adsorption parameter on the removal of
aspirin using tyre waste adsorbent, Chem. Eng. Trans., 72 (2019)
157–162.
- R. Sips, On the structure of a catalyst surface, J. Chem. Phys.,
16 (1948) 490–495, https://doi.org/10.1063/1.1746922.
- Y. Yu, Y.-Y. Zhuang, Z.-H. Wang, Adsorption of watersoluble
dye onto functionalized resin, J. Colloid Interface Sci.,
242 (2001) 288–293.
- T. Galaon, V. David, Deviation from van’t Hoff dependence
in RP‐LC induced by tautomeric interconversion observed for
four compounds, J. Sep. Sci., 34 (2011) 1423–1428.
- Ö. Kerkez-Kuyumcu, Ş.S. Bayazit, M.A. Salam, Antibiotic
amoxicillin removal from aqueous solution using magnetically
modified graphene nanoplatelets, J. Ind. Eng. Chem., 36 (2016)
198–205.
- S. Biswas, U. Mishra, Continuous fixed-bed column study
and adsorption modeling: removal of lead ion from aqueous
solution by charcoal originated from chemical carbonization
of rubber wood sawdust, J. Chem., 2015 (2015) 1–9, https://doi.
org/10.1155/2015/907379.
- H. Muhamad, H. Doan, A. Lohi, Batch and continuous
fixed-bed column biosorption of Cd2+ and Cu2+, Chem. Eng. J.,
158 (2010) 369–377.
- M.A.E. de Franco, C.B. de Carvalho, M.M. Bonetto, R. de
Pelegrini Soares, L.A. Féris, Diclofenac removal from water by
adsorption using activated carbon in batch mode and fixed-bed
column: isotherms, thermodynamic study and breakthrough
curves modeling, J. Cleaner Prod., 181 (2018) 145–154.
- Z. Xu, J.-G. Cai, B.-C. Pan, Mathematically modeling fixedbed
adsorption in aqueous systems, J. Zhejiang Univ. Sci. A,
14 (2013) 155–176.