References

  1. D.N. Lakdawalla, Economics of the pharmaceutical industry, J. Econ. Lit., 56 (2018) 397–449.
  2. P.E. Stackelberg, J. Gibs, E.T. Furlong, M.T. Meyer, S.D. Zaugg, R.L. Lippincott, Efficiency of conventional drinking-watertreatment processes in removal of pharmaceuticals and other organic compounds, Sci. Total Environ., 377 (2007) 255–272.
  3. B. Ferrari, N. Paxéus, R.L. Giudice, A. Pollio, J. Garric, Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac, Ecotoxicol. Environ. Saf., 55 (2003) 359–370.
  4. M. Iqbal, Vicia faba bioassay for environmental toxicity monitoring: a review, Chemosphere, 144 (2016) 785–802.
  5. M. Abbas, M. Adil, S. Ehtisham-ul-Haque, B. Munir, M. Yameen, A. Ghaffar, G. Abbas Shar, M. Asif Tahir, M. Iqbal, Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: a review, Sci. Total Environ., 626 (2018) 1295–1309.
  6. M. Iqbal, M. Abbas, J. Nisar, A. Nazir, Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: a review, Chem. Int., 5 (2019) 1–80.
  7. M.J. Ahmed, Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: review, J. Environ. Manage., 190 (2017) 274–282.
  8. M. Bally, N. Dendukuri, B. Rich, L. Nadeau, A. Helin-Salmivaara, E. Garbe, J.M. Brophy, Risk of acute myocardial infarction with NSAIDs in real world use: bayesian meta-analysis of individual patient data, BMJ, 357 (2017) j1909, doi: 10.1136/bmj.j1909.
  9. L. Feng, E.D. van Hullebusch, M.A. Rodrigo, G. Esposito, M.A. Oturan, Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review, Chem. Eng. J., 228 (2013) 944–964.
  10. M. Sarker, J.Y. Song, S.H. Jhung, Adsorptive removal of antiinflammatory drugs from water using graphene oxide/metalorganic framework composites, Chem. Eng. J., 335 (2018) 74–81.
  11. A.M. Ali, L.K. Sydnes, W.M. Alarif, S.S. Al-Lihaibi, M.M. Aly, S.G. Aanrud, R. Kallenborn, Diclofenac and two of its photooxidation products in the marine environment: their toxicology and occurrence in Red Sea coastal waters, Environ. Chem. Ecotoxicol., 1 (2019) 19–25.
  12. K. Fent, A.A. Weston, D. Caminada, Ecotoxicology of human pharmaceuticals, Aquatic Toxicol., 76 (2006) 122–159.
  13. A.T. Banks, H.J. Zimmerman, K.G. Ishak, J.G. Harter, Diclofenac-associated hepatotoxicity: analysis of 180 cases reported to the food and drug administration as adverse reactions, Hepatology, 22 (1995) 820–827.
  14. J. Lindsay Oaks, M. Gilbert, M.Z. Virani, R.T. Watson, C.U. Meteyer, B.A. Rideout, H.L. Shivaprasad, S. Ahmed, M.J.I. Chaudhry, M. Arshad, S. Mahmood, A. Ali, A. Ahmed Khan, Diclofenac residues as the cause of vulture population decline in Pakistan, Nature, 427 (2004) 630–633.
  15. Y.Q. Leng, W.L. Guo, S.N. Su, C.L. Yi, L.T. Xing, Removal of antimony(III) from aqueous solution by graphene as an adsorbent, Chem. Eng. J., 211 (2012) 406–411.
  16. Y.J. Yoon, W.K. Park, T.-M. Hwang, D.H. Yoon, W.S. Yang, J.-W. Kang, Comparative evaluation of magnetite–graphene oxide and magnetite-reduced graphene oxide composite for As(III) and As(V) removal, J. Hazard. Mater., 304 (2016) 196–204.
  17. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
  18. K. Gupta, O.P. Khatri, Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: plausible adsorption pathways, J. Colloid Interface Sci., 501 (2017) 11–21.
  19. R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, A. Gagor, B. Feist, R. Wrzalik, Adsorption of divalent metal ions from aqueous solutions using graphene oxide, Dalton Trans., 42 (2013) 5682–5689.
  20. G.Z. Kyzas, E.A. Deliyanni, D.N. Bikiaris, A.C. Mitropoulos, Graphene composites as dye adsorbents: review, Chem. Eng. Res. Des., 129 (2018) 75–88.
  21. J. Wang, B.L. Chen, Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials, Chem. Eng. J., 281 (2015) 379–388.
  22. A. Carmalin Sophia, E.C. Lima, N. Allaudeen, S. Rajan, Application of graphene based materials for adsorption of pharmaceutical traces from water and wastewater-a review, Desal. Water Treat., 57 (2016) 27573–27586.
  23. P.K. Boruah, D.J. Borah, J. Handique, P. Sharma, P. Sengupta, M.R. Das, Facile synthesis and characterization of Fe3O4 nanopowder and Fe3O4/reduced graphene oxide nanocomposite for methyl blue adsorption: a comparative study, J. Environ. Chem. Eng., 3 (2015) 1974–1985.
  24. L.A. Chacra, M.A. Sabri, T.H. Ibrahim, M.I. Khamis, N.M. Hamdan, S. Al-Asheh, M. AlRefai, C. Fernandez, Application of graphene nanoplatelets and graphene magnetite for the removal of emulsified oil from produced water, J. Environ. Chem. Eng., 6 (2018) 3018–3033.
  25. P.A. Webb, Introduction to Chemical Adsorption Analytical Techniques and their Applications to Catalysis, MIC Technical Publications, Micromeritics Instrument Corp., Norcross, Georgia 30093, 2003.
  26. A. Tayyebi, M. Outokesh, Supercritical synthesis of a magnetitereduced graphene oxide hybrid with enhanced adsorption properties toward cobalt & strontium ions, RSC Adv., 6 (2016) 13898–13913.
  27. J.C. Moreno, R. Gómez, L. Giraldo, Removal of Mn, Fe, Ni and Cu ions from wastewater using cow bone charcoal, Materials, 3 (2010) 452–466.
  28. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017) 1–11, https://doi.org/10.1155/2017/3039817.
  29. H.R. Wei, S.B. Deng, Q. Huang, Y. Nie, B. Wang, J. Huang, G. Yu, Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution, Water Res., 47 (2013) 4139–4147.
  30. Z. Hasan, N.A. Khan, S.H. Jhung, Adsorptive removal of diclofenac sodium from water with Zr-based metal–organic frameworks, Chem. Eng. J., 284 (2016) 1406–1413.
  31. C. Saucier, M.A. Adebayo, E.C. Lima, R. Cataluña, P.S. Thue, L.D.T. Prola, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan, G.L. Dotto, Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents, J. Hazard. Mater., 289 (2015) 18–27.
  32. A. Khan, J. Wang, J. Li, X.X. Wang, Z.S. Chen, A. Alsaedi, T. Hayat, Y.T. Chen, X.K. Wang, The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: a review, Environ. Sci. Pollut. Res., 24 (2017) 7938–7958.
  33. I.M. Jauris, C.F. Matos, C. Saucier, E.C. Lima, A.J.G. Zarbin, S.B. Fagan, F.M. Machado, I. Zanella, Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study, Phys. Chem. Chem. Phys., 18 (2016) 1526–1536.
  34. B.Y.Z. Hiew, L.Y. Lee, K.C. Lai, S.Y. Gan, S. Thangalazhy- Gopakumar, G.-T. Pan, T. Chung-KuangYang, Adsorptive decontamination of diclofenac by three-dimensional graphenebased adsorbent: response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies, Environ. Res., 168 (2019) 241–253.
  35. K.-Y.A. Lin, H.T. Yang, W.-D. Lee, Enhanced removal of diclofenac from water using a zeolitic imidazole framework functionalized with cetyltrimethylammonium bromide (CTAB), RSC Adv., 5 (2015) 81330–81340.
  36. X. Hu, Z. Cheng, Removal of diclofenac from aqueous solution with multi-walled carbon nanotubes modified by nitric acid, Chin. J. Chem. Eng., 23 (2015) 1551–1556.
  37. S. Larous, A.-H. Meniai, Adsorption of Diclofenac from aqueous solution using activated carbon prepared from olive stones, Int. J. Hydrogen Energy, 41 (2016) 10380–10390.
  38. L.A. Al-Khateeb, S. Almotiry, M.A. Salam, Adsorption of pharmaceutical pollutants onto graphene nanoplatelets, Chem. Eng. J., 248 (2014) 191–199.
  39. T. Mukoko, M. Mupa, U. Guyo, F. Dziike, Preparation of rice hull activated carbon for the removal of selected pharmaceutical waste compounds in hospital effluent, J. Environ. Anal. Toxicol., S7 (2015) 008, doi: 10.4172/2161-0525.S7-008.
  40. S. Wong, Y.J. Lee, N. Ngadi, I.M. Inuwa, N.B. Mohamed, Synthesis of activated carbon from spent tea leaves for aspirin removal, Chin. J. Chem. Eng., 26 (2018) 1003–1011.
  41. K. Mphahlele, M.S. Onyango, S.D. Mhlanga, Adsorption of aspirin and paracetamol from aqueous solution using Fe/NCNT/β-cyclodextrin nanocomopsites synthesized via a benign microwave assisted method, J. Environ. Chem. Eng., 3 (2015) 2619–2630.
  42. S.-H. Lee, O.H. Lin, R.-A. Doong, Design of size-tunable molecularly imprinted polymer for selective adsorption of acetaminophen, Clean Technol. Environ. Policy, 19 (2017) 243–250.
  43. A. Azman, N. Ngadi, D.K.A. Zaini, M. Jusoh, Z. Mohamad, A. Arsad, Effect of adsorption parameter on the removal of aspirin using tyre waste adsorbent, Chem. Eng. Trans., 72 (2019) 157–162.
  44. R. Sips, On the structure of a catalyst surface, J. Chem. Phys., 16 (1948) 490–495, https://doi.org/10.1063/1.1746922.
  45. Y. Yu, Y.-Y. Zhuang, Z.-H. Wang, Adsorption of watersoluble dye onto functionalized resin, J. Colloid Interface Sci., 242 (2001) 288–293.
  46. T. Galaon, V. David, Deviation from van’t Hoff dependence in RP‐LC induced by tautomeric interconversion observed for four compounds, J. Sep. Sci., 34 (2011) 1423–1428.
  47. Ö. Kerkez-Kuyumcu, Ş.S. Bayazit, M.A. Salam, Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets, J. Ind. Eng. Chem., 36 (2016) 198–205.
  48. S. Biswas, U. Mishra, Continuous fixed-bed column study and adsorption modeling: removal of lead ion from aqueous solution by charcoal originated from chemical carbonization of rubber wood sawdust, J. Chem., 2015 (2015) 1–9, https://doi. org/10.1155/2015/907379.
  49. H. Muhamad, H. Doan, A. Lohi, Batch and continuous fixed-bed column biosorption of Cd2+ and Cu2+, Chem. Eng. J., 158 (2010) 369–377.
  50. M.A.E. de Franco, C.B. de Carvalho, M.M. Bonetto, R. de Pelegrini Soares, L.A. Féris, Diclofenac removal from water by adsorption using activated carbon in batch mode and fixed-bed column: isotherms, thermodynamic study and breakthrough curves modeling, J. Cleaner Prod., 181 (2018) 145–154.
  51. Z. Xu, J.-G. Cai, B.-C. Pan, Mathematically modeling fixedbed adsorption in aqueous systems, J. Zhejiang Univ. Sci. A, 14 (2013) 155–176.