References

  1. P.L. Younger, Groundwater in the environment: an introduction, Oxford, Blackwell Publisher, Malden, MA, 2007 p. 318.
  2. H.H. Dieter, R. Möller. Ammonia, K. Aurand et al., Eds., Die trinkwasserverordnung, einführung und erläuterungen. The Drinking-Water Regulations, Introduction and Explanations, Erich-Schmidt Verlag, Berlin, 1991, pp. 362–368.
  3. P. Hadi, E. Soheil, H. Mohammad, H. Amirhossein, Comparison of zeolite (clinoptilolite) and activated carbon, in ammonia removal during transport of live rainbow trout fry (Oncorhynchus mykiss), J. Nat. Environ., Iran. J. Nat. Resour., 66 (2013) 255–260.
  4. A.G. Tekerlekopoulou, D.V. Vayenas, Ammonia, iron and manganese removal from potable water using trickling filters, Desalination, 210 (2007) 225–235.
  5. J. Lindenbaum, Identification of Sources of Ammonium in Groundwater Using Stable Nitrogen and Boron Isotopes in Dam Du, Hanoi, Master Thesis, Lund University, Lund, Sweden, 2012.
  6. M. Shaban, M.R. Abukhadra, M.G. Shahien, A.A.P. Khan, Upgraded modified forms of bituminous coal for the removal of safranin-T dye from aqueous solution, J. Environ. Sci. Pollut. Res., 24 (2017) 18135–18151.
  7. WHO, Guidelines for Drinking-Water Quality, 3rd ed., Incorporating the First and Second Addenda Volume 1, Recommendations, World Health Organization, Geneva, Switzerland, 2008.
  8. A. Alshameri, A. Ibrahim, A.M. Assabri, X.R. Lei, H.Q. Wang, C.J. Yan, The investigation into the ammonium removal performance of Yemeni natural zeolite: modification, ion exchange mechanism, and thermodynamics, Powder Technol., 258 (2014) 20–31.
  9. N. Taneva, Removal of ammonium and phosphates from aqueous solutions by activated and modified Bulgarian clinoptilolite, J. Chem. Eng. Mater. Sci., 3 (2012) 79–85.
  10. W.H. Xiong, J. Peng, Development and characterization of ferrihydrite-modified diatomite as a phosphorus adsorbent, Water Res., 42 (2008) 4869–4877.
  11. D.V. Vayenas, S. Pavlou, G. Lyberatos, Development of a dynamic model describing nitritification and nitratification in trickling filters, Water Res., 31 (1997) 1135–1147.
  12. A. Wilczak, J.G. Jacangelo, J.P. Marcinko, L.H. Odell, G.J. Kirmeyer, Occurrence of nitrification in chloraminated distribution systems, J. Am. Water Works Assn., 88 (1996) 74–85.
  13. H.X. Huo, H. Lin, Y.B. Dong, H. Cheng, H. Wang, L.X. Cao, Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite, J. Hazard. Mater., 229 (2012) 292–297.
  14. H.M. Abd El-Salam, R.A. Mohamed, A. Shokry, Preparation and characterization of novel and selective polyacrylamide-graftpoly( 2-methoxyaniline) adsorbent for lead removal, Polym. Bull., 75 (2018) 3189–3210.
  15. H.M. Abd El-Salam, E.H.M. Kamal, M.S. Ibrahim, Synthesis and characterization of chitosan-grafted-poly(2-hydroxyaniline) microstructures for water decontamination, J. Polym. Environ., 25 (2017) 973–982.
  16. T. Hatva, H. Seppanen, A. Vuorinen, L. Carlson, Removal of iron and manganese from groundwater by re-infiltration and slow sand filtration, Aqua Fennica, 15 (1985) 211.
  17. T. Hatva, Treatment of Groundwater with Slow Sand Filtration, Proceedings International Groundwater Microbiology. Problems and Biological Treatment, Kuopio, Finland, 4–6 August 1987.
  18. P. Mouchet, From conventional to biological removal of iron and manganese in France, J. Am. Water Works Assn., 84 (1992) 158.
  19. H.A. Abd El-Rehim, E.A. Hegazy, A. El-Hag Ali, Selective removal of some heavy metal ions from sing treated polyethylene-g-styrene/maleic anhydride membranes, React. Funct. Polym., 43 (2000) 105–116.
  20. M.A. Shaker, Adsorption of Co(II), Ni(II) and Cu(II) ions onto chitosan-modified poly(methacrylate) nanoparticles: dynamics, equilibrium and thermodynamics studies, J. Taiwan Inst. Chem. Eng., 57 (2015) 111–112.
  21. N. Thanh Ha, D.D. Khanh, H.T. Ngan, T.H. Quang, P.L. Huong, D.T. Hung, Nitrification of high levels of ammonia in groundwater using fixed-bed biofiltration technique, Vietnam J. Chem., 57 (2019) 75–79.
  22. S. Tabassum, A combined treatment method of novel mass bio system and ion exchange for the removal of ammonia nitrogen from micro-polluted water bodies, Chem. Eng. J., 378 (2019) 122217, https://doi.org/10.1016/j.cej.2019.122217.
  23. A.K. Maharjan, T. Kamei, I.M. Amatya, K. Mori, F. Kazama, T. Toyama, Ammonium-nitrogen (NH4+–N) removal from groundwater by a dropping nitrification reactor: characterization of NH4+–N transformation and bacterial community in the reactor, Water, 12 (2020) 599, https://doi.org/10.3390/w12020599.
  24. N.A.H. Mohamad Zaidi, L.B.L. Lim, A. Usman, Enhancing adsorption of Pb(II) from aqueous solution by NaOH and EDTA modified Artocarpus odoratissimus leaves, J. Environ. Chem. Eng., 6 (2018) 7172–7184.
  25. N. Priyantha, L.B.L. Lim, N.H. Mohd Mansor, A.B. Liyandeniya, Irreversible sorption of Pb(II) from aqueous solution on breadfruit peel to mitigate environmental pollution problems, Water Sci. Technol., 80 (2019) 2241–2249.
  26. L.B.L. Lim, N. Priyantha, Y.C. Lu, N.A.H. Mohamad Zaidi, Adsorption of heavy metal lead using Citrus grandis (Pomelo) leaves as low-cost adsorbent, Desal. Water Treat., 166 (2019) 44–52.
  27. H. Abdulrazzaq, H. Jol, A. Husni, R. Abu-Bakr, Characterization and stabilization of biochars obtained from empty fruit bunch, wood, and rice husk, J. Bioresour., 9 (2014) 98–2888.23
  28. S. Balci, Y. Dinçel, Ammonium ion adsorption with sepiolite: use of transient uptake method, J. Chem. Eng. Process., 41 (2002) 79–85.
  29. M.S. Çelik, B. Özdemir, M. Turan, I. Koyuncu, G. Atesok, H.Z. Sarikaya, Removal of ammonia by natural clay minerals using fixed and fluidized bed column reactors, J. Water Supply, 1 (2001) 81–98.
  30. A. Demir, A. Günay, E. Debik, Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite, J. Water SA, 8 (2002) 329–335.
  31. C.C. Hollister, J.J. Bisogni, J. Lehmann, Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover (Zea mays L.) and oak wood (Quercus ssp.), J. Environ. Qual., 42 (2013) 137–144.
  32. D. Tang, Z. Zheng, Z. Guo, Study on ammonia-nitrogen adsorption from low concentration waste water by modified zeolite and its desorption, Chin. J. Environ. Eng., 5 (2011) 293–296.
  33. M. Tian, Z. Zeng, Z. Jiang, Progress of preparation and applications of bamboo charcoal, J. Mater. Rev., 29 (2015) 143–146.
  34. S.R. Paudel, B.R. Kansakar, Dissolved ammonia adsorption in water using over burnt brick, Energy Res. J., 1 (2010) 1–5.
  35. M. Shaban, M.R. Abukhadra, F.M. Nasief, H.M. Abd El-Salam, Removal of ammonia from aqueous solutions, groundwater, and wastewater using mechanically activated clinoptilolite and synthetic zeolite-A: kinetic and equilibrium studies, Water Air Soil Pollut., 228 (2017) 450.
  36. Q.J. Li, J.W. Zhang, B.B. Liu, M. Li, R. Liu, X.L. Li, H.L. Ma, S.D. Yu, L. Wang, Y.G. Zou, Z.P. Li, B. Zou, T. Cui, G.T. Zou, Synthesis of high-density nanocavities inside TiO2–B nanoribbons and their enhanced electrochemical lithium storage properties, Inorg. Chem., 47 (2008) 9870–9873.
  37. R.M. Silverstein, F.X. Webster, D.J. Kiemle, D.L. Bryce, Spectrometric Identification of Organic Compounds, Wiley, New York, 1974.
  38. S.N. Monteiro, F.M. Margem, R.L. Loiola, F.S. de Assis, M.P. Oliveira, Characterization of banana fibers functional groups by infrared spectroscopy, Mater. Sci. Forum, 775–776 (2014) 250–254.
  39. M.C. Paiva, I. Ammar, A.R. Campos, R.B. Cheikh, A.M. Cunha, Alfa fibres: mechanical, morphological and interfacial characterization, Compos. Sci. Technol., 67 (2007) 1132–1138.
  40. K.R. Reddy, K.-P. Lee, A.I. Gopalan, Novel electrically conductive and ferromagnetic composites of poly(aniline-coaminonaphthalene sulfonic acid) with iron oxide nanoparticles: synthesis and characterization, J. Appl. Polym. Sci., 106 (2007) 1181–1191.
  41. B. Dan-asabe, A.S. Yaro, D.S. Yawas, S.Y. Aku, I.A. Samotu, U. Abubakar, D.O. Obada, Mechanical, spectroscopic and micro-structural characterization of banana particulate reinforced PVC composite as piping material, Tribol. Ind., 38 (2016) 255–267.
  42. C. Rojas, M. Cea, A. Iriarte, G. Valdés, R. Navia, J.P. Cárdenas-R, Thermal insulation materials based on agricultural residual wheat straw and corn husk biomass, for application in sustainable buildings, Sustainable Mater. Technol., 20 (2019) e00102, https://doi.org/10.1016/j.susmat.2019.e00102.
  43. X.J. Peng, Z.K. Luan, H.M. Zhang, Montmorillonite–Cu(II)/Fe(III) oxides magnetic material as adsorbent for removal of humic acid and its thermal regeneration, Chemosphere, 63 (2006) 300–306.
  44. C. Namasivayam, R.T. Yamuna, Adsorption of direct red 12 B by biogas residual slurry: equilibrium and rate processes, Environ. Pollut., 89 (1995) 1–7.
  45. H. Freundlich, W.J. Helle, J. Am. Chem. Soc., 61 (1939) 2–28.
  46. M.J. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiochimica URSS, 12 (1940) 217–222.
  47. S.Y. Lagergren, Zur Theorie der sogenannten Adsorption gelöster Stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar, 25 (1898) 1–39.
  48. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  49. K.S. Hui, C.Y.H. Chao, S.C. Kot, Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash, J. Hazard. Mater., 127 (2005) 89–101.