References
- P.L. Younger, Groundwater in the environment: an introduction,
Oxford, Blackwell Publisher, Malden, MA, 2007
p. 318.
- H.H. Dieter, R. Möller. Ammonia, K. Aurand et al., Eds., Die
trinkwasserverordnung, einführung und erläuterungen. The
Drinking-Water Regulations, Introduction and Explanations,
Erich-Schmidt Verlag, Berlin, 1991, pp. 362–368.
- P. Hadi, E. Soheil, H. Mohammad, H. Amirhossein, Comparison
of zeolite (clinoptilolite) and activated carbon, in ammonia
removal during transport of live rainbow trout fry (Oncorhynchus
mykiss), J. Nat. Environ., Iran. J. Nat. Resour., 66 (2013) 255–260.
- A.G. Tekerlekopoulou, D.V. Vayenas, Ammonia, iron and
manganese removal from potable water using trickling filters,
Desalination, 210 (2007) 225–235.
- J. Lindenbaum, Identification of Sources of Ammonium in
Groundwater Using Stable Nitrogen and Boron Isotopes
in Dam Du, Hanoi, Master Thesis, Lund University, Lund,
Sweden, 2012.
- M. Shaban, M.R. Abukhadra, M.G. Shahien, A.A.P. Khan,
Upgraded modified forms of bituminous coal for the removal
of safranin-T dye from aqueous solution, J. Environ. Sci. Pollut.
Res., 24 (2017) 18135–18151.
- WHO, Guidelines for Drinking-Water Quality, 3rd ed.,
Incorporating the First and Second Addenda Volume 1,
Recommendations, World Health Organization, Geneva,
Switzerland, 2008.
- A. Alshameri, A. Ibrahim, A.M. Assabri, X.R. Lei, H.Q. Wang,
C.J. Yan, The investigation into the ammonium removal
performance of Yemeni natural zeolite: modification, ion
exchange mechanism, and thermodynamics, Powder Technol.,
258 (2014) 20–31.
- N. Taneva, Removal of ammonium and phosphates from
aqueous solutions by activated and modified Bulgarian
clinoptilolite, J. Chem. Eng. Mater. Sci., 3 (2012) 79–85.
- W.H. Xiong, J. Peng, Development and characterization of
ferrihydrite-modified diatomite as a phosphorus adsorbent,
Water Res., 42 (2008) 4869–4877.
- D.V. Vayenas, S. Pavlou, G. Lyberatos, Development of a
dynamic model describing nitritification and nitratification
in trickling filters, Water Res., 31 (1997) 1135–1147.
- A. Wilczak, J.G. Jacangelo, J.P. Marcinko, L.H. Odell,
G.J. Kirmeyer, Occurrence of nitrification in chloraminated
distribution systems, J. Am. Water Works Assn., 88 (1996) 74–85.
- H.X. Huo, H. Lin, Y.B. Dong, H. Cheng, H. Wang, L.X. Cao,
Ammonia-nitrogen and phosphates sorption from simulated
reclaimed waters by modified clinoptilolite, J. Hazard. Mater.,
229 (2012) 292–297.
- H.M. Abd El-Salam, R.A. Mohamed, A. Shokry, Preparation and
characterization of novel and selective polyacrylamide-graftpoly(
2-methoxyaniline) adsorbent for lead removal, Polym.
Bull., 75 (2018) 3189–3210.
- H.M. Abd El-Salam, E.H.M. Kamal, M.S. Ibrahim, Synthesis and
characterization of chitosan-grafted-poly(2-hydroxyaniline)
microstructures for water decontamination, J. Polym. Environ.,
25 (2017) 973–982.
- T. Hatva, H. Seppanen, A. Vuorinen, L. Carlson, Removal
of iron and manganese from groundwater by re-infiltration
and slow sand filtration, Aqua Fennica, 15 (1985) 211.
- T. Hatva, Treatment of Groundwater with Slow Sand Filtration,
Proceedings International Groundwater Microbiology. Problems
and Biological Treatment, Kuopio, Finland, 4–6 August
1987.
- P. Mouchet, From conventional to biological removal of iron
and manganese in France, J. Am. Water Works Assn., 84 (1992)
158.
- H.A. Abd El-Rehim, E.A. Hegazy, A. El-Hag Ali, Selective
removal of some heavy metal ions from sing treated
polyethylene-g-styrene/maleic anhydride membranes, React.
Funct. Polym., 43 (2000) 105–116.
- M.A. Shaker, Adsorption of Co(II), Ni(II) and Cu(II) ions onto
chitosan-modified poly(methacrylate) nanoparticles: dynamics,
equilibrium and thermodynamics studies, J. Taiwan Inst.
Chem. Eng., 57 (2015) 111–112.
- N. Thanh Ha, D.D. Khanh, H.T. Ngan, T.H. Quang,
P.L. Huong, D.T. Hung, Nitrification of high levels of ammonia
in groundwater using fixed-bed biofiltration technique,
Vietnam J. Chem., 57 (2019) 75–79.
- S. Tabassum, A combined treatment method of novel mass bio
system and ion exchange for the removal of ammonia nitrogen
from micro-polluted water bodies, Chem. Eng. J., 378 (2019)
122217, https://doi.org/10.1016/j.cej.2019.122217.
- A.K. Maharjan, T. Kamei, I.M. Amatya, K. Mori, F. Kazama,
T. Toyama, Ammonium-nitrogen (NH4+–N) removal from
groundwater by a dropping nitrification reactor: characterization
of NH4+–N transformation and bacterial community in the
reactor, Water, 12 (2020) 599, https://doi.org/10.3390/w12020599.
- N.A.H. Mohamad Zaidi, L.B.L. Lim, A. Usman, Enhancing
adsorption of Pb(II) from aqueous solution by NaOH and EDTA
modified Artocarpus odoratissimus leaves, J. Environ. Chem.
Eng., 6 (2018) 7172–7184.
- N. Priyantha, L.B.L. Lim, N.H. Mohd Mansor, A.B. Liyandeniya,
Irreversible sorption of Pb(II) from aqueous solution on
breadfruit peel to mitigate environmental pollution problems,
Water Sci. Technol., 80 (2019) 2241–2249.
- L.B.L. Lim, N. Priyantha, Y.C. Lu, N.A.H. Mohamad Zaidi,
Adsorption of heavy metal lead using Citrus grandis (Pomelo)
leaves as low-cost adsorbent, Desal. Water Treat., 166 (2019)
44–52.
- H. Abdulrazzaq, H. Jol, A. Husni, R. Abu-Bakr, Characterization
and stabilization of biochars obtained from empty fruit bunch,
wood, and rice husk, J. Bioresour., 9 (2014) 98–2888.23
- S. Balci, Y. Dinçel, Ammonium ion adsorption with sepiolite:
use of transient uptake method, J. Chem. Eng. Process.,
41 (2002) 79–85.
- M.S. Çelik, B. Özdemir, M. Turan, I. Koyuncu, G. Atesok,
H.Z. Sarikaya, Removal of ammonia by natural clay minerals
using fixed and fluidized bed column reactors, J. Water Supply,
1 (2001) 81–98.
- A. Demir, A. Günay, E. Debik, Ammonium removal from
aqueous solution by ion-exchange using packed bed natural
zeolite, J. Water SA, 8 (2002) 329–335.
- C.C. Hollister, J.J. Bisogni, J. Lehmann, Ammonium, nitrate,
and phosphate sorption to and solute leaching from biochars
prepared from corn stover (Zea mays L.) and oak wood (Quercus
ssp.), J. Environ. Qual., 42 (2013) 137–144.
- D. Tang, Z. Zheng, Z. Guo, Study on ammonia-nitrogen
adsorption from low concentration waste water by modified
zeolite and its desorption, Chin. J. Environ. Eng., 5 (2011)
293–296.
- M. Tian, Z. Zeng, Z. Jiang, Progress of preparation and
applications of bamboo charcoal, J. Mater. Rev., 29 (2015)
143–146.
- S.R. Paudel, B.R. Kansakar, Dissolved ammonia adsorption in
water using over burnt brick, Energy Res. J., 1 (2010) 1–5.
- M. Shaban, M.R. Abukhadra, F.M. Nasief, H.M. Abd El-Salam,
Removal of ammonia from aqueous solutions, groundwater,
and wastewater using mechanically activated clinoptilolite
and synthetic zeolite-A: kinetic and equilibrium studies, Water
Air Soil Pollut., 228 (2017) 450.
- Q.J. Li, J.W. Zhang, B.B. Liu, M. Li, R. Liu, X.L. Li,
H.L. Ma, S.D. Yu, L. Wang, Y.G. Zou, Z.P. Li, B. Zou, T. Cui,
G.T. Zou, Synthesis of high-density nanocavities inside TiO2–B
nanoribbons and their enhanced electrochemical lithium
storage properties, Inorg. Chem., 47 (2008) 9870–9873.
- R.M. Silverstein, F.X. Webster, D.J. Kiemle, D.L. Bryce,
Spectrometric Identification of Organic Compounds, Wiley,
New York, 1974.
- S.N. Monteiro, F.M. Margem, R.L. Loiola, F.S. de Assis,
M.P. Oliveira, Characterization of banana fibers functional
groups by infrared spectroscopy, Mater. Sci. Forum, 775–776
(2014) 250–254.
- M.C. Paiva, I. Ammar, A.R. Campos, R.B. Cheikh,
A.M. Cunha, Alfa fibres: mechanical, morphological and
interfacial characterization, Compos. Sci. Technol., 67 (2007)
1132–1138.
- K.R. Reddy, K.-P. Lee, A.I. Gopalan, Novel electrically
conductive and ferromagnetic composites of poly(aniline-coaminonaphthalene
sulfonic acid) with iron oxide nanoparticles:
synthesis and characterization, J. Appl. Polym. Sci., 106 (2007)
1181–1191.
- B. Dan-asabe, A.S. Yaro, D.S. Yawas, S.Y. Aku, I.A. Samotu,
U. Abubakar, D.O. Obada, Mechanical, spectroscopic and
micro-structural characterization of banana particulate
reinforced PVC composite as piping material, Tribol. Ind.,
38 (2016) 255–267.
- C. Rojas, M. Cea, A. Iriarte, G. Valdés, R. Navia, J.P. Cárdenas-R,
Thermal insulation materials based on agricultural residual
wheat straw and corn husk biomass, for application in
sustainable buildings, Sustainable Mater. Technol., 20 (2019)
e00102, https://doi.org/10.1016/j.susmat.2019.e00102.
- X.J. Peng, Z.K. Luan, H.M. Zhang, Montmorillonite–Cu(II)/Fe(III) oxides magnetic material as adsorbent for removal
of humic acid and its thermal regeneration, Chemosphere,
63 (2006) 300–306.
- C. Namasivayam, R.T. Yamuna, Adsorption of direct red 12 B by
biogas residual slurry: equilibrium and rate processes, Environ.
Pollut., 89 (1995) 1–7.
- H. Freundlich, W.J. Helle, J. Am. Chem. Soc., 61 (1939) 2–28.
- M.J. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on
promoted iron catalysts, Acta Physiochimica URSS, 12 (1940)
217–222.
- S.Y. Lagergren, Zur Theorie der sogenannten Adsorption
gelöster Stoffe, Kungliga Svenska Vetenskapsakademiens.
Handlingar, 25 (1898) 1–39.
- Y.S. Ho, G. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- K.S. Hui, C.Y.H. Chao, S.C. Kot, Removal of mixed heavy metal
ions in wastewater by zeolite 4A and residual products from
recycled coal fly ash, J. Hazard. Mater., 127 (2005) 89–101.