References
- B.S. Silvestre, D.M. Ţîrcă, Innovations for sustainable
development: moving toward a sustainable future, J. Cleaner
Prod., 208 (2019) 325–332.
- R.L. Burritt, C. Herzig, S. Schaltegger, T. Viere, Diffusion of
environmental management accounting for cleaner production:
evidence from some case studies, J. Cleaner Prod., 224 (2019)
479–491.
- H. Li, W. Bao, C. Xiu, Y. Zhang, H. Xu, Energy conservation
and circular economy in China’s process industries, Energy,
35 (2010) 4273–4281.
- A.G. Olabi, Circular economy and renewable energy, 181 (2019)
450–454.
- Q. Zhu, Y. Geng, K.H. Lai, Circular economy practices among
Chinese manufacturers varying in environmental-oriented
supply chain cooperation and the performance implications,
J. Environ. Manage., 91 (2010) 1324–1331.
- S. Tiwari, C.R. Behera, B. Srinivasan, Simulation and experimental
studies to enhance water reuse and reclamation in
India’s largest dairy industry, J. Environ. Chem. Eng., 4 (2016)
605–616.
- W. Chen, X. Yin, H. Zhang, Towards low carbon development
in China: a comparison of national and global models, J. Clim.
Change, 136 (2016) 95–108.
- L.E. Borge, P. Parmer, R. Torvik, Local natural resource curse?,
J. Public Econ., 131 (2015) 101–114.
- G. Venkatesh, R. Abdi Elmi, Economic environmental analysis
of handling biogas from sewage sludge digesters in WWTPs
(wastewater treatment plants) for energy recovery: case study
of Bekkelaget WWTP in Oslo (Norway), J. Energy, 58 (2013)
220–235.
- L.P. Lauven, An optimization approach to biorefinery setup
planning, Biomass Bioenergy, 70 (2014) 440–451.
- V.K. Tyagi, S.L. Lo, Sludge: a waste or renewable source for
energy and resources recovery?, J. Renewable Sustainable
Energy Rev., 25 (2013) 708–728.
- H. Singh, G. Chauhan, A.K. Jain, S.K. Sharma, Adsorptive
potential of agricultural wastes for removal of dyes from
aqueous solutions, Environ. Chem. Eng., 5 (2017) 122–135.
- H.R. Sadabad, G.B. Gholikandi, Experimental study of direct
bio-electricity generation from municipal waste-activated
sludge simultaneously with its stabilization and modeling the
process by KSOFM and MLP artificial neural networks, Desal.
Water Treat., 93 (2017) 239–249.
- H.R. Sadabad, G.B. Gholikandi, Harvesting direct electricity
from municipal waste-activated sludge simultaneous with its
aerobic stabilization process: investigation and optimization,
J. Environ. Chem. Eng., 5 (2017) 1174–1185.
- H.R. Sadabad, G.B. Gholikandi, Simultaneous effective sludge
stabilization and direct electricity generation by merging
microbial fuel cell (MFC) and Fered-Fenton reactor: an
experimental study, Biomass Bioenergy J., 119 (2018) 75–89.
- S.H. Joo, F.D. Monaco, E. Antmann, P. Chorath, Sustainable
approaches for minimizing biosolids production and
maximizing reuse options in sludge management: a review,
J. Environ. Manage., 158 (2015) 133–145.
- A. Zielinska, P. Oleszczuk, The conversion of sewage sludge
into biochar reduces polycyclic aromatic hydrocarbon content
and ecotoxicity but increases trace metal content, J. Biomass
Bioenergy, 75 (2015) 235–244.
- A.C. Sophia, V.M. Bhalambaal, E.C. Lima, M. Thirunavoukkarasu,
Microbial desalination cell technology: contribution to
sustainable waste water treatment process, current status and
future applications, J. Environ. Chem. Eng., 4 (2016) 3468–3478.
- Z. Ge, F. Zhang, J. Grimaud, J. Hurst, Z. He, Long-term
investigation of microbial fuel cells treating primary sludge
or digested sludge, Bioresour. Technol., 136 (2013) 509–514.
- N. Mills, P. Pearce, J. Farrow, R.B. Thorpe, N.F. Kirkby,
Environmental and economic life cycle assessment of current
and future sewage sludge to energy technologies, Waste Manage.,
34 (2014) 185–195.
- N. Birjandi, H. Younesi, A.A. Ghoreyshi, M. Rahimnejad,
Electricity generation through degradation of organic matters
in medicinal herbs wastewater using bio-electro-Fenton
system, J. Environ. Manage., 180 (2016) 390–400.
- A. Hussain, M. Manuel, B. Tartakovsky, A comparison of
simultaneous organic carbon and nitrogen removal in microbial
fuel cells and microbial electrolysis cells, J. Environ. Manage.,
173 (2016) 23–33.
- C. Jayashree, K. Tamilarasan, M. Rajkumar, P. Arulazhagan,
K.N. Yogalakshmi, M. Srikanth, J.R. Banu, Treatment of seafood
processing wastewater using upflow microbial fuel cell for
power generation and identification of bacterial community in
anodic biofilm, J. Environ. Manage., 180 (2016) 351–358.
- J. Choi, Y. Ahn, Increased power generation from primary
sludge in microbial fuel cells coupled with prefermentation,
Bioprocess. Biosyst. Eng., 37 (2014) 2549–2557.
- D. Pant, G. Van Bogaert, L. Diels, K. Vanbroekhoven, A review
of the substrates used in microbial fuel cells (MFCs) for
sustainable energy production, Bioresour. Technol., 101 (2010)
1533–1543.
- H. Wang, J.D. Park, Z. Ren, Active energy harvesting from
microbial fuel cells at the maximum power point without
using resistors, Environ. Sci. Technol., 46 (2012) 5247–5252.
- H. Ren, H.S. Lee, J. Chae, Miniaturizing microbial fuel cells for
potential portable power sources: promises and challenges,
Microfluid. Nanofluid., 13 (2012) 353–381.
- U. Karra, S.S. Manickam, J.R. McCutcheon, N. Patel, B. Li,
Power generation and organics removal from wastewater
using activated carbon nanofiber (ACNF) microbial fuel cells
(MFCs), Int. J. Hydrogen Energy, 38 (2013) 1588–1597.
- S. Cheng, P. Kiely, B.E. Logan, Pre-acclimation of a wastewater
inoculum to cellulose in an aqueous–cathode MEC improves
power generation in air–cathode MFCs, Bioresour. Technol.,
102 (2011) 367–371.
- I. Shizas, D.M. Bagley, Experimental determination of energy
content of unknown organics in municipal wastewater
streams, J. Energy Eng., 130 (2004) 45–53.
- A.V. Schenone, L.O. Conte, M.A. Botta, O.M. Alfano, Modeling
and optimization of photo-Fenton degradation of 2,4-D using
ferrioxalate complex and response surface methodology (RSM),
J. Environ. Manage., 155 (2015) 177–183.
- S. Ghafari, H.A. Aziz, M.H. Isa, A.A. Zinatizadeh, Application
of response surface methodology (RSM) to optimize
coagulation–flocculation treatment of leachate using polyaluminum
chloride (PAC) and alum, J. Hazard. Mater.,
163 (2009) 650–656.
- S.S. Moghaddam, M.A. Moghaddam, M. Arami, Coagulation/flocculation process for dye removal using sludge from water
treatment plant: optimization through response surface
methodology, J. Hazard. Mater., 175 (2010) 651–657.
- C.M. Borror, D.C. Montgomery, R.H. Myers, Evaluation of
statistical designs for experiments involving noise variables,
J. Qual. Technol., 34 (2002) 54–70.
- U.T. Un, A. Kandemir, N. Erginel, S.E. Ocal, Continuous
electrocoagulation of cheese whey wastewater: an application
of response surface methodology, J. Environ. Manage.,
146 (2014) 245–250.
- G. Guven, A. Perendeci, A. Tanyolac, Electrochemical treatment
of deproteinated whey wastewater and optimization of
treatment conditions with response surface methodology,
J. Hazard. Mater., 157 (2008) 69–78.
- D. Hou, R. Goei, X. Wang, P. Wang, T.T. Lim, Preparation of
carbon-sensitized and Fe–Er codoped TiO2 with response surface
methodology for bisphenol A photocatalytic degradation under
visible-light irradiation, Appl. Catal., B, 126 (2012) 121–133.
- APHA, Standard Methods for Examination of Water and
Wastewaters, 20th ed., U.S. Environmental Protection Agency,
American Public Health Association, Washington, DC, 1999.
- L. Metcalf, H.P. Eddy, G. Tchobanoglous, Wastewater
Engineering: Treatment, Disposal, and Reuse, McGraw-Hill,
New York, NY, 2010.
- J. Jiang, Q. Zhao, J. Zhang, G. Zhang, D.J. Lee, Electricity
generation from bio-treatment of sewage sludge with microbial
fuel cell, Bioresour. Technol., 100 (2009) 5808–5812.
- M. Hosseinpour, M. Vossoughi, I. Alemzadeh, An efficient
approach to cathode operational parameters optimization
for microbial fuel cell using response surface methodology,
J. Environ. Health Sci. Eng., 12 (2014) 1–11.
- B. Min, O.B. Roman, I. Angelidaki, Importance of temperature
and anodic medium composition on microbial fuel cell (MFC)
performance, Biotechnol. Lett., 30 (2008) 1213–1218.
- H. Liu, S. Cheng, B.E. Logan, Power generation in fed-batch
microbial fuel cells as a function of ionic strength, temperature,
and reactor configuration, Environ. Sci. Technol., 39 (2005)
5488–5493.
- J.C. Biffinger, J. Pietron, O. Bretschger, L.J. Nadeau,
G.R. Johnson, C.C. Williams, B.R. Ringeisen, The influence
of acidity on microbial fuel cells containing Shewanella
oneidensis, Biosens. Bioelectron., 24 (2008) 900–905.
- G.S. Jadhav, M.M. Ghangrekar, Performance of microbial fuel
cell subjected to variation in pH, temperature, external load
and substrate concentration, Bioresour. Technol., 100 (2009)
717–723.
- E. Martin, O. Savadogo, S.R. Guiot, B. Tartakovsky, The
influence of operational conditions on the performance of a
microbial fuel cell seeded with mesophilic anaerobic sludge,
Biochem. Eng. J., 51 (2010) 132–139.
- V. Vologni, R. Kakarla, I. Angelidaki, B. Min, Increased power
generation from primary sludge by a submersible microbial
fuel cell and optimum operational conditions, Bioprocess.
Biosyst. Eng., 36 (2013) 635–642.
- A. Larrosa-Guerrero, K. Scott, K.P. Katuri, C. Godinez,
I.M. Head, T. Curtis, Open circuit versus closed circuit
enrichment of anodic biofilms in MFC: effect on performance
and anodic communities, Appl. Microbiol. Biotechnol.,
87 (2010) 1699–1713.
- S. Puig, M. Serra, M. Coma, M. Cabré, M.D. Balaguer,
J. Colprim, Effect of pH on nutrient dynamics and electricity
production using microbial fuel cells, Bioresour. Technol.,
101 (2010) 9594–9599.
- T. Zhang, C. Cui, S. Chen, H. Yang, P. Shen, The direct
electrocatalysis of Escherichia coli through electro-activated
excretion in microbial fuel cell, Electrochem. Commun.,
10 (2008) 293–297.
- F. Yang, L. Ren, Y. Pu, B.E. Logan, Electricity generation
from fermentation solution of primary sludge using singlechambered
air-cathode microbial fuel cells, Bioresour. Technol.,
128 (2013) 784–787.
- G.D. Zupancic, M. Ros, Aerobic and two-stage anaerobic–aerobic sludge digestion with pure oxygen and air aeration,
Bioresour. Technol., 99 (2008) 100–109.
- W.J. Jewell, R.M. Kabrick, Autoheated aerobic thermophilic
digestion with aeration, J. Water Pollut. Control Fed., (1980)
512–523.
- G.C. Gil, I.S. Chang, B.H. Kim, M. Kim, J.K. Jang, H.S. Park,
H.J. Kim, Operational parameters affecting the performannce
of a mediator-less microbial fuel cell, Biosens. Bioelectron.,
18 (2003) 327–334.
- J. Guo, Y. Peng, S. Wang, Y. Zheng, H. Huang, Z. Wang,
Long-term effect of dissolved oxygen on partial nitrification
performance and microbial community structure, Bioresour.
Technol., 100 (2009) 2796–2802.
- S. Hawash, N. El-Ibiari, F.H. Aly, G. El-Diwani, M.A. Hamad,
Kinetic study of thermophilic aerobic stabilization of sludge,
Biomass Bioenergy, 6 (1994) 283–286.
- J.O. Ugwuanyi, L.M. Harvey, B. McNeil, Effect of digestion
temperature and pH on treatment efficiency and evolution of
volatile fatty acids during thermophilic aerobic digestion of
model high strength agricultural waste, Bioresour. Technol.,
96 (2005) 707–719.
- S. Bernard, N.F. Gray, Aerobic digestion of pharmaceutical and
domestic wastewater sludges at ambient temperature, Water
Res., 34 (2000) 725–734.
- S. Oh, B. Min, B.E. Logan, Cathode performance as a factor
in electricity generation in microbial fuel cells, Environ. Sci.
Technol., 38 (2004) 4900–4904.
- Y. Fan, H. Hu, H. Liu, Enhanced Coulombic efficiency and power
density of air-cathode microbial fuel cells with an improved
cell configuration, J. Power Sources, 171 (2007) 348–354.
- U. Schroder, J. Nieben, F. Scholz, A generation of microbial
fuel cells with current outputs boosted by more than one order
of magnitude, Angew. Chem. Int. Ed., 42 (2003) 2880–2883.
- R.A. Rozendal, H.V. Hamelers, C.J. Buisman, Effects of
membrane cation transport on pH and microbial fuel cell
performance, Environ. Sci. Technol., 40 (2006) 5206–5211.
- A. El-Mekawy, H.M. Hegab, X. Dominguez-Benetton, D. Pant,
Internal resistance of microfluidic microbial fuel cell: challenges
and potential opportunities, Bioresour. Technol., 142 (2013)
672–682.
- B.H. Kim, I.S. Chang, G.M. Gadd, Challenges in microbial fuel
cell development and operation, Appl. Microbiol. Biotechnol.,
76 (2007) 485–494.
- B.E. Logan, J.M. Regan, Electricity-producing bacterial
communities in microbial fuel cells, Trends Microbiol., 14 (2006)
512–518.
- T.D. Brock, Thermophilic Microorganisms and Life at High
Temperatures, Springer Science & Business Media, New York,
NY, 2012.
- N. Beales, Adaptation of microorganisms to cold temperatures,
weak acid preservatives, low pH, and osmotic stress: a review,
Compr. Rev. Food Sci. Food Saf., 3 (2004) 1–20.
- R. Margesin, J. Cimadom, F. Schinner, Biological activity
during composting of sewage sludge at low temperatures,
Int. Biodeterior. Biodegrad., 57 (2006) 88–92.
- H. Liu, B.E. Logan, Electricity generation using an air-cathode
single chamber microbial fuel cell in the presence and absence
of a proton exchange membrane, Environ. Sci. Technol.,
38 (2004) 4040–4046.
- Z. He, Y. Huang, A.K. Manohar, F. Mansfeld, Effect of electrolyte
pH on the rate of the anodic and cathodic reactions in an aircathode
microbial fuel cell, Bioelectrochemistry, 74 (2008) 78–82.
- H.N. Gavala, U. Yenal, I.V. Skiadas, P. Westermann, B.K. Ahring,
Mesophilic and thermophilic anaerobic digestion of primary
and secondary sludge. Effect of pre-treatment at elevated
temperature, Water Res., 37 (2003) 4561–4572.
- H.A. Painter, J.E. Loveless, Effect of temperature and pH
value on the growth-rate constants of nitrifying bacteria in
the activated-sludge process, Water Res., 17 (1983) 237–248.
- K. Belafi-Bako, B. Vajda, N. Nemestothy, Study on operation
of a microbial fuel cell using mesophilic anaerobic sludge,
Desal. Water Treat., 35 (2011) 222–226.
- Z. He, J. Kan, Y. Wang, Y. Huang, F. Mansfeld, K.H. Nealson,
Electricity production coupled to ammonium in a microbial
fuel cell, Environ. Sci. Technol., 43 (2009) 3391–3397.
- Z. He, N. Wagner, S.D. Minteer, L.T. Angenent, An upflow
microbial fuel cell with an interior cathode: assessment of the
internal resistance by impedance spectroscopy, Environ. Sci.
Technol., 40 (2006) 5212–5217.
- Y. Fan, E. Sharbrough, H. Liu, Quantification of the internal
resistance distribution of microbial fuel cells, Environ. Sci.
Technol., 42 (2008) 8101–8107.
- P. Liang, X. Huang, M.Z. Fan, X.X. Cao, C. Wang, Composition
and distribution of internal resistance in three types of
microbial fuel cells, Appl. Microbiol. Biotechnol., 77 (2007)
551–558.
- P.Y. Zhang, Z.L. Liu, Experimental study of the microbial
fuel cell internal resistance, J. Power Sources, 195 (2010)
8013–8018.
- B. Erable, N. Duteanu, S.S. Kumar, Y. Feng, M.M. Ghangrekar,
K. Scott, Nitric acid activation of graphite granules to increase
the performance of the non-catalyzed oxygen reduction
reaction (ORR) for MFC applications, Electrochem. Commun.,
11 (2009) 1547–1549.
- S.E. Oh, J.R. Kim, J.H. Joo, B.E. Logan, Effects of applied
voltages and dissolved oxygen on sustained power generation
by microbial fuel cells, Water Sci. Technol., 60 (2009) 1311–1317.
- B.M. Wilen, J.L. Nielsen, K. Keiding, P.H. Nielsen, Influence
of microbial activity on the stability of activated sludge flocs,
Colloids Surf., B, 18 (2000) 145–156.