References

  1. B.S. Silvestre, D.M. Ţîrcă, Innovations for sustainable development: moving toward a sustainable future, J. Cleaner Prod., 208 (2019) 325–332.
  2. R.L. Burritt, C. Herzig, S. Schaltegger, T. Viere, Diffusion of environmental management accounting for cleaner production: evidence from some case studies, J. Cleaner Prod., 224 (2019) 479–491.
  3. H. Li, W. Bao, C. Xiu, Y. Zhang, H. Xu, Energy conservation and circular economy in China’s process industries, Energy, 35 (2010) 4273–4281.
  4. A.G. Olabi, Circular economy and renewable energy, 181 (2019) 450–454.
  5. Q. Zhu, Y. Geng, K.H. Lai, Circular economy practices among Chinese manufacturers varying in environmental-oriented supply chain cooperation and the performance implications, J. Environ. Manage., 91 (2010) 1324–1331.
  6. S. Tiwari, C.R. Behera, B. Srinivasan, Simulation and experimental studies to enhance water reuse and reclamation in India’s largest dairy industry, J. Environ. Chem. Eng., 4 (2016) 605–616.
  7. W. Chen, X. Yin, H. Zhang, Towards low carbon development in China: a comparison of national and global models, J. Clim. Change, 136 (2016) 95–108.
  8. L.E. Borge, P. Parmer, R. Torvik, Local natural resource curse?, J. Public Econ., 131 (2015) 101–114.
  9. G. Venkatesh, R. Abdi Elmi, Economic environmental analysis of handling biogas from sewage sludge digesters in WWTPs (wastewater treatment plants) for energy recovery: case study of Bekkelaget WWTP in Oslo (Norway), J. Energy, 58 (2013) 220–235.
  10. L.P. Lauven, An optimization approach to biorefinery setup planning, Biomass Bioenergy, 70 (2014) 440–451.
  11. V.K. Tyagi, S.L. Lo, Sludge: a waste or renewable source for energy and resources recovery?, J. Renewable Sustainable Energy Rev., 25 (2013) 708–728.
  12. H. Singh, G. Chauhan, A.K. Jain, S.K. Sharma, Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions, Environ. Chem. Eng., 5 (2017) 122–135.
  13. H.R. Sadabad, G.B. Gholikandi, Experimental study of direct bio-electricity generation from municipal waste-activated sludge simultaneously with its stabilization and modeling the process by KSOFM and MLP artificial neural networks, Desal. Water Treat., 93 (2017) 239–249.
  14. H.R. Sadabad, G.B. Gholikandi, Harvesting direct electricity from municipal waste-activated sludge simultaneous with its aerobic stabilization process: investigation and optimization, J. Environ. Chem. Eng., 5 (2017) 1174–1185.
  15. H.R. Sadabad, G.B. Gholikandi, Simultaneous effective sludge stabilization and direct electricity generation by merging microbial fuel cell (MFC) and Fered-Fenton reactor: an experimental study, Biomass Bioenergy J., 119 (2018) 75–89.
  16. S.H. Joo, F.D. Monaco, E. Antmann, P. Chorath, Sustainable approaches for minimizing biosolids production and maximizing reuse options in sludge management: a review, J. Environ. Manage., 158 (2015) 133–145.
  17. A. Zielinska, P. Oleszczuk, The conversion of sewage sludge into biochar reduces polycyclic aromatic hydrocarbon content and ecotoxicity but increases trace metal content, J. Biomass Bioenergy, 75 (2015) 235–244.
  18. A.C. Sophia, V.M. Bhalambaal, E.C. Lima, M. Thirunavoukkarasu, Microbial desalination cell technology: contribution to sustainable waste water treatment process, current status and future applications, J. Environ. Chem. Eng., 4 (2016) 3468–3478.
  19. Z. Ge, F. Zhang, J. Grimaud, J. Hurst, Z. He, Long-term investigation of microbial fuel cells treating primary sludge or digested sludge, Bioresour. Technol., 136 (2013) 509–514.
  20. N. Mills, P. Pearce, J. Farrow, R.B. Thorpe, N.F. Kirkby, Environmental and economic life cycle assessment of current and future sewage sludge to energy technologies, Waste Manage., 34 (2014) 185–195.
  21. N. Birjandi, H. Younesi, A.A. Ghoreyshi, M. Rahimnejad, Electricity generation through degradation of organic matters in medicinal herbs wastewater using bio-electro-Fenton system, J. Environ. Manage., 180 (2016) 390–400.
  22. A. Hussain, M. Manuel, B. Tartakovsky, A comparison of simultaneous organic carbon and nitrogen removal in microbial fuel cells and microbial electrolysis cells, J. Environ. Manage., 173 (2016) 23–33.
  23. C. Jayashree, K. Tamilarasan, M. Rajkumar, P. Arulazhagan, K.N. Yogalakshmi, M. Srikanth, J.R. Banu, Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm, J. Environ. Manage., 180 (2016) 351–358.
  24. J. Choi, Y. Ahn, Increased power generation from primary sludge in microbial fuel cells coupled with prefermentation, Bioprocess. Biosyst. Eng., 37 (2014) 2549–2557.
  25. D. Pant, G. Van Bogaert, L. Diels, K. Vanbroekhoven, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioresour. Technol., 101 (2010) 1533–1543.
  26. H. Wang, J.D. Park, Z. Ren, Active energy harvesting from microbial fuel cells at the maximum power point without using resistors, Environ. Sci. Technol., 46 (2012) 5247–5252.
  27. H. Ren, H.S. Lee, J. Chae, Miniaturizing microbial fuel cells for potential portable power sources: promises and challenges, Microfluid. Nanofluid., 13 (2012) 353–381.
  28. U. Karra, S.S. Manickam, J.R. McCutcheon, N. Patel, B. Li, Power generation and organics removal from wastewater using activated carbon nanofiber (ACNF) microbial fuel cells (MFCs), Int. J. Hydrogen Energy, 38 (2013) 1588–1597.
  29. S. Cheng, P. Kiely, B.E. Logan, Pre-acclimation of a wastewater inoculum to cellulose in an aqueous–cathode MEC improves power generation in air–cathode MFCs, Bioresour. Technol., 102 (2011) 367–371.
  30. I. Shizas, D.M. Bagley, Experimental determination of energy content of unknown organics in municipal wastewater streams, J. Energy Eng., 130 (2004) 45–53.
  31. A.V. Schenone, L.O. Conte, M.A. Botta, O.M. Alfano, Modeling and optimization of photo-Fenton degradation of 2,4-D using ferrioxalate complex and response surface methodology (RSM), J. Environ. Manage., 155 (2015) 177–183.
  32. S. Ghafari, H.A. Aziz, M.H. Isa, A.A. Zinatizadeh, Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using polyaluminum chloride (PAC) and alum, J. Hazard. Mater., 163 (2009) 650–656.
  33. S.S. Moghaddam, M.A. Moghaddam, M. Arami, Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology, J. Hazard. Mater., 175 (2010) 651–657.
  34. C.M. Borror, D.C. Montgomery, R.H. Myers, Evaluation of statistical designs for experiments involving noise variables, J. Qual. Technol., 34 (2002) 54–70.
  35. U.T. Un, A. Kandemir, N. Erginel, S.E. Ocal, Continuous electrocoagulation of cheese whey wastewater: an application of response surface methodology, J. Environ. Manage., 146 (2014) 245–250.
  36. G. Guven, A. Perendeci, A. Tanyolac, Electrochemical treatment of deproteinated whey wastewater and optimization of treatment conditions with response surface methodology, J. Hazard. Mater., 157 (2008) 69–78.
  37. D. Hou, R. Goei, X. Wang, P. Wang, T.T. Lim, Preparation of carbon-sensitized and Fe–Er codoped TiO2 with response surface methodology for bisphenol A photocatalytic degradation under visible-light irradiation, Appl. Catal., B, 126 (2012) 121–133.
  38. APHA, Standard Methods for Examination of Water and Wastewaters, 20th ed., U.S. Environmental Protection Agency, American Public Health Association, Washington, DC, 1999.
  39. L. Metcalf, H.P. Eddy, G. Tchobanoglous, Wastewater Engineering: Treatment, Disposal, and Reuse, McGraw-Hill, New York, NY, 2010.
  40. J. Jiang, Q. Zhao, J. Zhang, G. Zhang, D.J. Lee, Electricity generation from bio-treatment of sewage sludge with microbial fuel cell, Bioresour. Technol., 100 (2009) 5808–5812.
  41. M. Hosseinpour, M. Vossoughi, I. Alemzadeh, An efficient approach to cathode operational parameters optimization for microbial fuel cell using response surface methodology, J. Environ. Health Sci. Eng., 12 (2014) 1–11.
  42. B. Min, O.B. Roman, I. Angelidaki, Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance, Biotechnol. Lett., 30 (2008) 1213–1218.
  43. H. Liu, S. Cheng, B.E. Logan, Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration, Environ. Sci. Technol., 39 (2005) 5488–5493.
  44. J.C. Biffinger, J. Pietron, O. Bretschger, L.J. Nadeau, G.R. Johnson, C.C. Williams, B.R. Ringeisen, The influence of acidity on microbial fuel cells containing Shewanella oneidensis, Biosens. Bioelectron., 24 (2008) 900–905.
  45. G.S. Jadhav, M.M. Ghangrekar, Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration, Bioresour. Technol., 100 (2009) 717–723.
  46. E. Martin, O. Savadogo, S.R. Guiot, B. Tartakovsky, The influence of operational conditions on the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge, Biochem. Eng. J., 51 (2010) 132–139.
  47. V. Vologni, R. Kakarla, I. Angelidaki, B. Min, Increased power generation from primary sludge by a submersible microbial fuel cell and optimum operational conditions, Bioprocess. Biosyst. Eng., 36 (2013) 635–642.
  48. A. Larrosa-Guerrero, K. Scott, K.P. Katuri, C. Godinez, I.M. Head, T. Curtis, Open circuit versus closed circuit enrichment of anodic biofilms in MFC: effect on performance and anodic communities, Appl. Microbiol. Biotechnol., 87 (2010) 1699–1713.
  49. S. Puig, M. Serra, M. Coma, M. Cabré, M.D. Balaguer, J. Colprim, Effect of pH on nutrient dynamics and electricity production using microbial fuel cells, Bioresour. Technol., 101 (2010) 9594–9599.
  50. T. Zhang, C. Cui, S. Chen, H. Yang, P. Shen, The direct electrocatalysis of Escherichia coli through electro-activated excretion in microbial fuel cell, Electrochem. Commun., 10 (2008) 293–297.
  51. F. Yang, L. Ren, Y. Pu, B.E. Logan, Electricity generation from fermentation solution of primary sludge using singlechambered air-cathode microbial fuel cells, Bioresour. Technol., 128 (2013) 784–787.
  52. G.D. Zupancic, M. Ros, Aerobic and two-stage anaerobic–aerobic sludge digestion with pure oxygen and air aeration, Bioresour. Technol., 99 (2008) 100–109.
  53. W.J. Jewell, R.M. Kabrick, Autoheated aerobic thermophilic digestion with aeration, J. Water Pollut. Control Fed., (1980) 512–523.
  54. G.C. Gil, I.S. Chang, B.H. Kim, M. Kim, J.K. Jang, H.S. Park, H.J. Kim, Operational parameters affecting the performannce of a mediator-less microbial fuel cell, Biosens. Bioelectron., 18 (2003) 327–334.
  55. J. Guo, Y. Peng, S. Wang, Y. Zheng, H. Huang, Z. Wang, Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure, Bioresour. Technol., 100 (2009) 2796–2802.
  56. S. Hawash, N. El-Ibiari, F.H. Aly, G. El-Diwani, M.A. Hamad, Kinetic study of thermophilic aerobic stabilization of sludge, Biomass Bioenergy, 6 (1994) 283–286.
  57. J.O. Ugwuanyi, L.M. Harvey, B. McNeil, Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste, Bioresour. Technol., 96 (2005) 707–719.
  58. S. Bernard, N.F. Gray, Aerobic digestion of pharmaceutical and domestic wastewater sludges at ambient temperature, Water Res., 34 (2000) 725–734.
  59. S. Oh, B. Min, B.E. Logan, Cathode performance as a factor in electricity generation in microbial fuel cells, Environ. Sci. Technol., 38 (2004) 4900–4904.
  60. Y. Fan, H. Hu, H. Liu, Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration, J. Power Sources, 171 (2007) 348–354.
  61. U. Schroder, J. Nieben, F. Scholz, A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude, Angew. Chem. Int. Ed., 42 (2003) 2880–2883.
  62. R.A. Rozendal, H.V. Hamelers, C.J. Buisman, Effects of membrane cation transport on pH and microbial fuel cell performance, Environ. Sci. Technol., 40 (2006) 5206–5211.
  63. A. El-Mekawy, H.M. Hegab, X. Dominguez-Benetton, D. Pant, Internal resistance of microfluidic microbial fuel cell: challenges and potential opportunities, Bioresour. Technol., 142 (2013) 672–682.
  64. B.H. Kim, I.S. Chang, G.M. Gadd, Challenges in microbial fuel cell development and operation, Appl. Microbiol. Biotechnol., 76 (2007) 485–494.
  65. B.E. Logan, J.M. Regan, Electricity-producing bacterial communities in microbial fuel cells, Trends Microbiol., 14 (2006) 512–518.
  66. T.D. Brock, Thermophilic Microorganisms and Life at High Temperatures, Springer Science & Business Media, New York, NY, 2012.
  67. N. Beales, Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review, Compr. Rev. Food Sci. Food Saf., 3 (2004) 1–20.
  68. R. Margesin, J. Cimadom, F. Schinner, Biological activity during composting of sewage sludge at low temperatures, Int. Biodeterior. Biodegrad., 57 (2006) 88–92.
  69. H. Liu, B.E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol., 38 (2004) 4040–4046.
  70. Z. He, Y. Huang, A.K. Manohar, F. Mansfeld, Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an aircathode microbial fuel cell, Bioelectrochemistry, 74 (2008) 78–82.
  71. H.N. Gavala, U. Yenal, I.V. Skiadas, P. Westermann, B.K. Ahring, Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature, Water Res., 37 (2003) 4561–4572.
  72. H.A. Painter, J.E. Loveless, Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated-sludge process, Water Res., 17 (1983) 237–248.
  73. K. Belafi-Bako, B. Vajda, N. Nemestothy, Study on operation of a microbial fuel cell using mesophilic anaerobic sludge, Desal. Water Treat., 35 (2011) 222–226.
  74. Z. He, J. Kan, Y. Wang, Y. Huang, F. Mansfeld, K.H. Nealson, Electricity production coupled to ammonium in a microbial fuel cell, Environ. Sci. Technol., 43 (2009) 3391–3397.
  75. Z. He, N. Wagner, S.D. Minteer, L.T. Angenent, An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy, Environ. Sci. Technol., 40 (2006) 5212–5217.
  76. Y. Fan, E. Sharbrough, H. Liu, Quantification of the internal resistance distribution of microbial fuel cells, Environ. Sci. Technol., 42 (2008) 8101–8107.
  77. P. Liang, X. Huang, M.Z. Fan, X.X. Cao, C. Wang, Composition and distribution of internal resistance in three types of microbial fuel cells, Appl. Microbiol. Biotechnol., 77 (2007) 551–558.
  78. P.Y. Zhang, Z.L. Liu, Experimental study of the microbial fuel cell internal resistance, J. Power Sources, 195 (2010) 8013–8018.
  79. B. Erable, N. Duteanu, S.S. Kumar, Y. Feng, M.M. Ghangrekar, K. Scott, Nitric acid activation of graphite granules to increase the performance of the non-catalyzed oxygen reduction reaction (ORR) for MFC applications, Electrochem. Commun., 11 (2009) 1547–1549.
  80. S.E. Oh, J.R. Kim, J.H. Joo, B.E. Logan, Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells, Water Sci. Technol., 60 (2009) 1311–1317.
  81. B.M. Wilen, J.L. Nielsen, K. Keiding, P.H. Nielsen, Influence of microbial activity on the stability of activated sludge flocs, Colloids Surf., B, 18 (2000) 145–156.