References
- A. Sarris, Antarctic station life: the first 15 years of mixed
expeditions to the Antarctic, Acta Astronaut., 131 (2017) 50–54.
- K.A. Hughes, A. Constable, Y. Frenot, J. Lopez-Martinez,
E. Mclvor, B. Njastad, A. Terauds, D. Liggett, G. Roldan,
A. Wilmotte, J.C. Xavier, Antarctic environmental protection:
strengthening the links between science and governance,
Environ. Sci. Policy, 83 (2018) 86–95.
- Australia Antarctic Division, Pollution and Waste, Department
of the Environmental and Energy, 2012. Available at: http://www.antarctica.gov.au.
- T. Tin, Z.L. Fleming, K.A. Hughes, D.G. Ainley, P. Convey,
C.A. Moreno, S. Pfeiffer, J. Scott, I. Snape, Review impacts of
local human activities on the Antarctic environment, Antarct.
Sci., 21 (2009) 3–33.
- T.A. Tengku-Mazuki, A. Zulkharnain, K. Subramaniam,
P. Convey, C. Gomez-Fuentes, S.A. Ahmad, Effects of zinc
(Zn) and chromium (Cr) on the phenol-degrading bacteria
growth kinetics, Malaysian Biochem. Mol. Biol., 23 (2020) 1–4.
- V. Ruoppolo, E.J. Whoehler, K. Morgan, C.J. Clumpner, Wildlife
and oil in the Antarctic: a recipe for cold disaster, Polar Rec.,
49 (2013) 97–103.
- P.K. Bharti, B. Sharma, R.K. Singh, A.K. Tyagi, Waste generation
and management in Antarctica, Procedia Environ. Sci., 35 (2016)
40–50.
- M.F. Fingas, Vegetable Oil Spills: Oil Properties and Behaviour,
Handbook of Oil Spill Science and Technology, John Wiley and
Sons Inc, Canada, 2012.
- United States Environmental Protection Agency (EPA),
Vegetable Oils and Animal Fats, 2020. Available at: https://
www.epa.gov.
- National Oceanic and Atmospheric Administration (NOAA),
How Oil Harms Animals and Plants in Marine Environments,
2019. Available at: https://www. response.restoration.noaa.
gov.
- European Oiled Wildlife Response Assistance Module
(EUROWA), Effect of Oil on Wildlife, 2019. Available at: https://
www.oiledwildlife.eu.
- K. Lee, M. Baudreau, J. Bugden, L. Burridge, S.E. Cobanli,
S. Courtenay, S. Grenon, B. Hollebone, P. Kepkay, Z. Li, M. Lyons,
H. Niu, T.L. King, S. MacDonald, E.C. Mclntyre, B. Robinson,
S.A. Ryan, G. Wohlgeschaffen, State of Knowledge Review of
Fate and Effect of Oil in the Arctic Marine Environment, Report
prepared for National Energy Board of Canada, Centre for
Offshore Oil, Gas and Energy Research (COOGER), Fisheries
and Oceans Canada, Bedford Institute of Oceanography,
Dartmouth, NS, 2011, Available at: https//:www.researchgate.
net.
- P.F. Kingston, Long-term environmental impact of oil spills,
Spill Sci. Technol. Bull., 7 (2002) 53–61.
- J.M. Aislabie, M.R. Balks, J.M. Fought, E.J. Waterhouse,
Hydrocarbon spills on Antarctic soils: effects and management,
Environ. Sci. Technol., 38 (2004) 1265–1274.
- K.N.M. Zahri, A. Zulkharnain, S. Ibrahim, C. Gomez-Fuentes,
S. Sabri, N. Calisto-Ulloa, S.A. Ahmad, Kinetic analysis on the
effects of lead (Pb) and silver (Ag) on waste canola oil (WCO)
biodegradation by selected Antarctic microbial consortium,
Malaysian Biochem. Mol. Biol., 23 (2020) 20–23.
- S. Kariminia, S.S. Ahmad, R. Hashim, Z. Ismail, Environmental
consequences of Antarctic tourism from a global prospective,
Procedia Soc. Behav. Sci., 105 (2013) 781–791.
- E. Abatenh, B. Gizaw, Z. Tsegaye, M. Wassie, The role of
microorganisms in bioremediation- a review, Environ. Biol.,
2 (2017) 38–46.
- N.N. Zakaria, Z. Man, A. Zulkharnain, S.A. Ahmad,
Psychrotolerant biosurfactant-producing bacteria for hydrocarbon
degradation: a mini review, Malaysian Biochem. Mol.
Biol., 22 (2019) 52–59.
- L. Zhao, W. Guoa, W. Zhaoa, X. Tanga, Q. Lia, Z. Huanga,
Bioremediation technologies and mechanisms for pentachlorophenol
contaminated soil and sediment of water
environment, Desal. Water Treat., 125 (2018) 278–284.
- Y. Fan, G. Wang, J. Fu, X. Zheng, Bioremediation of waste drilling
fluid: comparison of biostimulation and bioaugmentation,
Desal. Water Treat., 48 (2012) 329–334.
- C.C. Azubuike, C.B. Chikere, G.C. Olpokwasili, Bioremediation
techniques-classification based on site of application: principles,
advantages, limitations and prospects, World J. Microb.
Biotechnol., 32 (2016) 180.
- I.Z. Affandi, N.H. Suratman, S. Abdullah, W.A. Ahamd,
Z.A. Zakaria, Degradation of oil and grease from high-strength
industrial effluents using locally isolated aerobic biosurfactantproducing
bacteria, Int. Biodeterior. Biodegrad., 95 (2014) 33–40.
- S. Ibrahim, A. Zulkharnain, K.N.M. Zahri, G.L.Y. Lee,
P. Convey, C. Gomez-Fuentes, S. Sabri, K. Khalil, S. Alias,
G. Gonzalez-Rocha, S.A. Ahmad, Effect of heavy metals and
other xenobiotics on biodegradation of waste canola oil by coldadapted
Rhodococcus sp. strain AQ5-07, Rev. Mex. Ing. Quím.,
19 (2020) 1041–1052.
- M.T. Piakong, N.Z. Zaida, Effectiveness of single and microbial
consortium of locally isolated beneficial microorganisms
(LIBeM) in bioaugmentation of oil sludge contaminated soil
at different concentration levels: a laboratory scale, J. Biorem.
Biodegrad., 9 (2018). doi: 10.4172/2155–6199.1000430
- K. Patowary, R. Patowary, M.C. Kalita, S. Deka, Development of
an efficient bacterial consortium for the potential remediation
of hydrocarbons from contaminated sites, Front. Microbiol.,
7 (2016). doi: 10.3389/fmicb.2016.01092
- A. Nzila, A. Thukair, S. Sankara, S.A. Razzak, Characterisation
of aerobic oil and grease-degrading bacteria in wastewater,
Environ. Technol., 38 (2016) 661–670.
- N. Gurung, S. Ray, S. Bose, V. Rai, A broader view: microbial
enzymes and their relevance in industries, medicine, and beyond,
BioMed Res. Int., (2013) 329121. doi: 10.1155/2013/329121
- M. Balseiro-Romero, C. Monterroso, P.S. Kidd, P. Gkorezis,
J. Vangronsveld, J.J. Casares, Modelling the Bioremediation of
a Diesel-Contaminated Soil Using an Enriched Hydrocarbon-
Degrading Inoculant, 2017. Available at: http://www.systemdynamics.
org.
- N. Mehrmand, M.K. Moravaji, A. Parvareh, Adsorption of Pb(II),
Cu(II) and Ni(II) ions on sfunctionalised carbon nanotube-C60
hybrid: adsorption process, isotherm, thermodynamic and
kinetic studies, Desal. Water Treat., 152 (2019) 283–298.
- D.J. Mahanta, M. Borah, P. Saikia, A study on kinetic models for
analysing the bacterial growth rate, Am. Int. J. Res. Sci. Technol.
Eng. Math., 14 (2014) 68–72.
- J.A. Robinson, Determining microbial kinetic parameters using
non-linear regression analysis, Adv. Microb. Ecol., 8 (1985)
61–114.
- S.A. Ahmad, K.N.E.K. Ahamad, W.L.W. Johari, M.I.E. Halmi,
M.Y. Shukor, M.T. Yusof, Kinetics of diesel degradation by
and acrylamide-degrading bacterium, Sci. Fisiche e Naturali,
25 (2014) 505–512.
- D. Tazdait, N. Abdi, H. Grib, H. Lounici, A. Pauss, N. Mameri,
Comparison of different models of substrate inhibition in
aerobic batch biodegradation of malathion, Turk. J. Eng.
Environ. Sci., 37 (2013) 221–230.
- M.E. Hibbing, C. Fuqua, M.R. Parsek, S.B. Peterson, Bacterial
competition: surviving and thriving in the microbial jungle,
Nat. Rev. Microbiol., 8 (2010) 15–25.
- J.G. Leahy, R.H. Olsen, Kinetics of toluene degradation by
toluene-oxidising bacteria as a function of oxygen concentration,
and the effect of nitrate, FEMS Microbiol. Ecol., 23 (1997) 23–30.
- N. Debasmita, M. Rajasimman, Optimisation and kinetics studies
on biodegradation of atrazine using mixed microorganisms,
Alexandria Eng. J., 52 (2013) 499–505.
- I. Kachieng, M.N.B. Momba, Kinetics of petroleum oil
biodegradation by a consortium of three protozoan isolates
(Aspidisca sp., Trachelophyllum sp. and Peranema sp.), Biotechnol.
Rep., 15 (2017) 125–131.
- G.C. Mbah, K.O. Obahiagbon, Kinetics of bioremediation
of crude oil contaminated soil using organic and inorganic
particulates, Petrol. Sci. Technol., 36 (2018) 9–15.
- G.L.Y. Lee, S.A. Ahmad, N.A. Yasid, A. Zulkharnain, P. Convey,
W.L.W. Johari, S.A. Alias, G. Gonzalez-Rocha, M.Y. Shukor,
Biodegradation of phenol by adapted bacteria from Antarctic
soils, Polar Biol., 41 (2018) 553–562.
- J. Membre, M. Kubaczka, C. Chene, Combined effects of pH
and sugar on growth rate of Zygosaccharomyces rouxii, a bakery
product spoilage yeast, Appl. Environ. Microbiol., 65 (1999)
4921–4925.
- D.S. Nichols, J. Olley, H. Garda, R.R. Brenner, T.A. McMeekin,
Effect of temperature and salinity stress on growth and
lipid composition of Shewanella gelidimarina, Appl. Environ.
Microbiol., 66 (2000) 2422–2429.
- H. Oh, Y. Wee, J. Yun, H. Ryu, Lactic acid production through
cell-recycle repeated-batch bioreactor, Appl. Biochem. Biotechnol.,
105 (2003) 604–613.
- J.E. Aston, B.M. Peyton, Response of Halomonas campisalis to
saline stress: changes in growth kinetics, compatible solute
production and membrane phospholipid fatty acid composition,
FEMS Microbiol. Lett., 274 (2007) 196–203.
- Z. Hu, S. Duan, N. Xu, M.R. Mulholland, Growth and nitrogen
uptake kinetics in cultures Prorocentrum donghaiense, PLoS One,
9 (2014) e94030.
- N.M. Nawawi, S.A. Ahmad, M.Y. Shukor, M.A. Syed,
K.A. Khalil, N.A.A. Rahman, F.A. Dahalan, A.L. Ibrahim,
Statistical optimisation for improvement of phenol degradation
by Rhodococcus sp. NAM 81, J. Environ. Biol., 37 (2016) 443–451.
- A. Khoshdel, B.M. Vaziri, Novel mathematical models for
prediction of microbial growth kinetics and contaminant
degradation in bioremediation process, J. Environ. Eng.
Landscape Manage., 24 (2016) 157–164.
- M. Manogaran, M.Y. Shukor, N.A. Yasid, K.A. Khalil,
S.A. Ahmad, Optimisation of culture composition for glyphosate
degradation by Burkholderia vietnamiensis strain AQ5–
12, 3 Biotech, 8 (2018) 108–120.
- S. Aiba, M. Shoda, M. Nagatani, Kinetics of product inhibition
in alcohol fermentation, Biotechnol. Bioeng., 67 (1968) 671–690.
- J.S.B. Haldane, Enzymes, Longmans, Green & Co, MIT Press,
Cambridge, United Kingdom, 1930.
- V.H. Edwards, The influence of high substrate concentrations
on microbial kinetics, Biotechnol. Bioeng., 12 (1970) 679–712.
- T. Yano, S. Koga, Dynamic behavior the chemostat subject to
substrate inhibition, Biotechnol. Bioeng., 19 (1969) 97–114.
- H. Pham, A new criterion for model selection, Mathematics,
7 (2019). doi: 10.3390/math7121215
- L.A. Mellefont, T.A. McMeekin, T. Ross, Performance evaluation
of a model describing the effects of temperature, water activity,
pH and lactic acid concentration on the growth of Escherichia
coli, Int. J. Food Microbiol., 82 (2003) 45–58.
- S.H. Hamad, Factors Affecting the Growth of Microorganism
in Food, R. Bhat, A. Karim Alias, G. Paliyath, Eds., Progress in
Food Preservation, Wiley-Blackwell, Oxford, UK, 2012.
- A.M. Mukred, A.A. Hamid, A. Hamzah, W.M. Wan Yusoff,
Enhancement of biodegradation of crude peroleum-oil in
contaminated water by the addition of nitrogen sources, Pak.
Biol. Sci., 11 (2008) 2122–2127.
- K. Subramaniam, T.A.T. Mazuki, M.Y. Shukor, S.A. Ahmad,
Isolation and optimisation of phenol degradation by Antarctic
isolate using one factor at a time, Malaysian J. Biochem.
Mol. Biol., 1 (2019) 79–86.
- M. Abdulrasheed, N. Zakaria, A.F.A. Roslee, M.Y. Shukor,
A. Zulkharnain, S. Napis, S.A. Alias, G. Gonzalez-Rocha,
S.A. Ahmad, Biodegradation of diesel oil by cold-adapted
bacterial strains of Arthrobacter spp. from Antarctica, Antarct.
Sci., (2020) 1–13, doi: 10.1017/S0954102020000206.
- S. Sumarsih, N. Matuzahroh, Fatimah, M. Puspitasari,
M. Rusdiana, Effect of aliphatic and aromatic hydrocarbons on
the oxygenase production from hyrdocarbonoclastic bacteria,
J. Chem. Technol. Metall., 52 (2017) 1062–1069.
- D. Maliji, Z. Olama, H. Holail, Environmental studies on the
microbial degradation of oil hydrocarbons and its application
in Lebanese oil polluted coastal and marine ecosystem, Int.
J. Curr. Microbiol. Sci., 2 (2013) 1–18.
- M. Hassanshahian, S. Cappello, Crude oil biodegradation in
the marine environments. In R. Chamy, F. Rosenkranz, Eds.,
Biodegradation-Engineering Technology, InTech, Rijeka, Croatia,
2013.
- L. Huang, J. Xie, B. Lv, X. Shi, G. Li, F. Liang, J. Lian,
Optimisation of nutrient component for diesel oil degradation
by Acinetobacter baijerinckii ZRS, Mar. Pollut. Bull., 76 (2013)
325–332.
- N.N. Zakaria, A.F.A. Roslee, C. Gomez-Fuentes, A. Zulkharnain,
M. Abdulrasheed, S. Sabri, N. Ramírez-Moreno, N. Calisto-Ulloa, S. Ahmad, Kinetic studies of marine psychrotolerant
microorganisms capable of degrading diesel in the presence
of heavy metals, Rev. Mex. Ing. Quím., 19 (2020) 1375–1388.
- A. Ruiz-Marín, J.C. Zavala-Loria, Y. Canedo-López,
A.V. Cordova-Quiroz, Tropical bacteria isolated from oil-contaminated
mangrove soil: bioremediation by natural
attenuation and bioaugmentation, Rev. Mex. Ing. Quím., 12 (2013)
553–560.
- M.S.M. Annuar, I.K.P. Tan, S. Ibrahim, K.B. Ramachandran,
A kinetic model for growth and biosynthesis of
medium-chain-length poly-(3-Hydroxyalkanoates) in
Pseudomonas putida, Braz. J. Chem. Eng., 25 (2008) 217–228.
- J. Carrera, I. Jubany, L. Carvallo, R. Chamy, J. Lafuente, Kinetic
models for nitrification inhibition by ammonium and nitrate
in a suspended and an immobilised biomass systems, Process
Biochem., 39 (2004) 1159–1165.
- J. Krishnan, A.A. Kishore, A. Suresh, A.K. Murali, J. Vasudevan,
Biodegradation kinetics of azo dye mixture: substrate inhibition
modelling, Res. J. Pharm. Biol. Chem. Sci., 8 (2017) 365–375.
- A.F.A. Roslee, N.N. Zakaria, P. Convey, A. Zulkharnain,
G.L.Y. Lee, C. Gomez-Fuentes, S.A. Ahmad, Statistical
optimisation of growth conditions and diesel degradation
by the Antarctic bacterium, Rhodococcus sp. Strain AQ5–07,
Extremophiles, 24 (2020) 277–291.
- S. Habib, S.A. Ahmad, W.L.W. Johari, M.Y.A. Shukor,
S.A. Alias, K.A. Khalil, N.A. Yasid, Evaluation of conventional
and response surface level optimisation on n-dodecane (n-C12)
mineralisation by psychrotolerant strains isolated from pristine
soil at Southern Victoria Island, Antarctica, Microb. Cell
Fact., 17 (2018) 44–65.
- C. Park, E.A. Marchand, Modelling salinity inhibition effects
during biodegradation of perchlorate, J. Appl. Microbiol.,
101 (2005) 222–233.
- A.R. Shaw, Investigating the Significance of Half-saturation
Coefficients on Wastewater Treatment Processes, Ph.D. dissertation,
Graduate College of the Illinois Institute of Technology,
United States, 2015.
- M.N. Metsoviti, N. Katsoulas, I.T. Karapanagiotidis,
G. Papapolymerou, Effect of nitrogen concentration, two-stage
and prolonged cultivation on growth rate, lipid and protein
content of Chlorella vulgaris, J. Chem. Technol. Biotechnol.,
94 (2018) 1466–1573.
- A. Bren, Y. Hart, E. Dekel, D. Koster, U. Alon, The last generation
of bacterial growth in limiting nutrient, BMC Syst. Biol., 7 (2013)
27–35.
- P.M. Armenante, F. Fava, D. Kafkewits, Effect of yeast extract on
growth kinetics during aerobic biodegradation of chlorobenzoic
acids, Biotechnol. Bioeng., 47 (1995) 227–233.
- P. Saravanan, K. Pakshirajan, P. Saha, Growth kinetics of
an indigenous mixed microbial consortium during phenol
degradation in a batch reactor, Bioresour. Technol., 99 (2008)
205–209.
- P. Gluszc, J. Petera, S. Ledakowicz, Mathematical modelling
of the integrated process of mercury bioremediation in the
industrial bioreactor, Bioprocess Biosyst. Eng., 34 (2011)
275–285.
- S. Dey, S. Mukherjee, A study of the kinetic coefficients and
the rate of biodegradation of phenol by indigenous mixed
microbial system, Afr. J. Water Conserv. Sustainability, 2 (2014)
99–107. Available at: www.internationalscholarsjournals.org.
- S. Sandhibigraha, S. Chakraborty, T. Bandyopadhyay, B. Bhunia,
A kinetic study of 4-chlorophenol biodegradation by the novel
isolated Bacillus subtilis in batch shake flask, Environ. Eng.
Res., 25 (2020) 62–70.
- Z. Sadouk-Hachaichi, A. Tazerouti, H. Hacene, Growth kinetics
study of a bacterial consortium producing biosurfactants,
constructed with six strains isolated from oily sludge,
Adv. Biosci. Biotechnol., 5 (2014) 418–425.
- P.L. Brezonik, Chemical Kinetics and Process Dynamics in
Aquatic Systems, Lewis Publishers, Florida, US, 2002.