References

  1. Global Water Crisis, The Facts, 2020. Available at: https://inweh. unu.edu/wp-content/uploads/2017/11/Global-Water-Crisis-The-Facts.pdf (Accessed on: 10 May 2020).
  2. R. Tröger, P. Klöckner, L. Ahrens, K. Wiberg, Micropollutants in drinking water from source to tap - method development and application of a multiresidue screening method, Sci. Total Environ., 627 (2018) 1404–1432.
  3. C.C. Montagner, F.F. Sodré, R.D. Acayaba, C. Vidal, I. Campestrini, M.A. Locatelli, I.C. Pescara, A.F. Albuquerque, G.A. Umbuzeiro, W.F. Jardim, Ten years-snapshot of the occurrence of emerging contaminants in drinking, surface and ground waters and wastewaters from São Paulo State, Brazil, J. Braz. Chem. Soc., 30 (2019) 614–632.
  4. J. Kozak, M. Włodarczyk-Makuła, Comparison of the PAHs degradation effectiveness using CaO2 or H2O2 under the photo-Fenton reaction, Desal. Water Treat., 134 (2018) 57–64.
  5. J. Kozak, M. Włodarczyk-Maukła, The use of sodium percarbonate in the Fenton reaction for the PAHs oxidation, Civil Environ. Eng. Rep., 28 (2018) 124–139.
  6. K. Shakir, A.F. Elkafrawy, H.F. Ghoneimy, S.G. Elrab Beheir, M. Refaat, Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation, Water Res., 44 (2010) 1449–1461.
  7. L. Yu, Y. Mao, L. Qu, Simple voltammetric determination of Rhodamine B by using the glassy carbon electrode in fruit juice and preserved fruit, Food Anal. Methods, 6 (2013) 1665–1670.
  8. S.S. Imam, H.F. Babamale, A short review on the removal of rhodamine B dye Rusing agricultural waste-based adsorbents, Asian J. Chem. Sci., 7 (2020) 25–37.
  9. B. Dogan, M. Kerestecioglu, U. Ulku Yetis, Assessment of the best available wastewater management techniques for a textile mill: cost and benefit analysis, Water Sci. Technol., 61 (2010) 963–970.
  10. R. Zhang, P. Sun, T.H. Boyer, L. Zhao, C.H. Huang, Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS, Environ. Sci. Technol., 49 (2015) 3056–3066.
  11. S. Nasseri, A.H. Mahvi, M. Seyedsalehi, K. Yaghmaeian, R. Nabizadeh, M. Aliomohammadi, G.H. Safari, Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: effect of radical scavenger and water matrix, J. Mol. Liq., 241 (2017) 704–714.
  12. S.A. Hakim, S. Jaber, N.Z. Eddine, A. Baalbaki, A. Ghauch, Data for persulfate activation by UV light to degrade theophylline in a water effluent, Data Brief, 27 (2019) 104614.
  13. Y. Ji, W. Xie, Y. Fan, Y. Shi, D. Kong, J. Lu, Degradation of trimethoprim by thermo-activated persulfate oxidation: reaction kinetics and transformation mechanisms, Chem. Eng. J., 286 (2016) 16–24.
  14. J. Criquet, N.K. Vel Leitner, Electron beam irradiation of aqueous solution of persulfate ions, Chem. Eng. J., 169 (2011) 258–262.
  15. O. Furman, A.L. Teel, R.J. Watts, Mechanism of base activation of persulfate, Environ. Sci. Technol., 44 (2010) 6423–6428.
  16. M. Nie, C. Yan, M. Li, X. Wang, W. Bi, W. Dong, Degradation of chloramphenicol by persulfate activated by Fe2+ and zerovalent iron, Chem. Eng. J., 279 (2015) 507–515.
  17. G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol., 38 (2004) 3705–3712.
  18. W.S. Chen, Y.C. Su, Removal of dinitrotoluenes in wastewater by sono-activated persulfate, Ultrason. Sonochem., 19 (2012) 921–927.
  19. X. Cheng, H. Guo, Y. Zhang, G. Korshin, B. Yang, Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: activation performance and structurefunction relationship, Water Res., 157 (2019) 406–414.
  20. P. Zawadzki, Decolorisation of Methylene Blue with sodium persulfate activated with visible light in the presence of glucose and sucrose, Water Air Soil Pollut., 230 (2019) 1–18.
  21. W. Wang, H. Wang, G. Li, T. An, H. Zhao, P.K. Wong, Catalyst-free activation of persulfate by visible light for water disinfection: efficiency and mechanisms, Water Res., 157 (2019) 106–118.
  22. H. Herrmann, On the photolysis of simple anions and neutral molecules as sources of O/OH, SOx and Cl in aqueous solution, Phys. Chem. Chem. Phys., 9 (2007) 3935–3964.
  23. R.J. Watts, M. Ahmad, A.K. Hohner, A.L. Teel, Persulfate activation by glucose for in situ chemical oxidation, Water Res., 133 (2018) 247–254.
  24. P. Gayathri, R.P.J. Dorathi, K. Palanivelu, Sonochemical degradation of textile dyes in aqueous solution using sulphate radicals activated by immobilized cobalt ions, Ultrason. Sonochem., 17 (2010) 566–571.
  25. G.J. Price, A.A. Clifton, Sonochemical acceleration of persulfate decomposition, Polymer, 37 (1996) 3971–3973.
  26. K.H. Chu, Y.A.J. Al-Hamadani, C.M. Park, G. Lee, M. Jang, A. Jang, N. Her, A. Son, Y. Yoon, Ultrasonic treatment of endocrine disrupting compounds, pharmaceuticals, and personal care products in water: a review, Chem. Eng. J., 327 (2017) 629–647.
  27. A.B. Kurukutla, P.S.S. Kumar, S. Anandan, T. Sivasankar, Sonochemical degradation of Rhodamine B using oxidants, hydrogen peroxide/peroxydisulfate/peroxymonosulfate, with Fe2+ ion: proposed pathway and kinetics, Environ. Eng. Sci., 32 (2015) 129–140.
  28. Rhodamine B. Available at: https://pubchem.ncbi.nlm.nih.gov/ compound/Rhodamine-B, 2020 (Accessed on: 10 May 2020).
  29. K.P. Wai, Y.L. Pang, S. Lim, C.H. Koo, W.C. Chong, Hydrothermal modification of zinc oxide and titanium dioxide for photocatalytic degradation of Rhodamine B, AIP Conf. Proc., 2157 (2019) 020006.
  30. D. Melgoza, A. Hernandez-Ramirez, J.M. Peralta-Hernandez, Comparative efficiencies of the decolourisation of methylene blue Rusing Fenton’s and photo-Fenton’s reactions, Photochem. Photobiol. Sci., 8 (2009) 596–599.
  31. D. Nakarada, M. Petkovic, Mechanistic insights on how hydroquinone disarms OH and OOH radicals, Quantum Chem., 118 (2018) 1–14.
  32. J. Wang, S. Wang, Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants, Chem. Eng. J., 334 (2018) 1502–1517.
  33. H. Azarpira, M. Sadani, M. Abtahi, N. Vaezi, S. Rezaei, Z. Atafar, S.M. Mohseni, M. Sarkhosh, M. Ghaderpoori, H. Keramati, R.H. Pouyaj, A. Akbari, V. Fanai, Photo-catalytic degradation of triclosan with UV/iodide/ZnO process: performance, kinetic, degradation pathway, energy consumption and toxicology, J. Photochem. Photobiol. A, 371 (2019) 423–432.
  34. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O–) in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
  35. T. Cai, Y. Liu, L. Wang, W. Dong, H. Chen, W. Zeng, X. Xia, G. Zeng, Activation of persulfate by photoexcited dye for antibiotic degradation: radical and nonradical reactions, Chem. Eng. J., 375 (2019) 122070.
  36. M. Ahmad, A.L. Teel, R.J. Watts, Mechanism of persulfate activation by phenols, Environ. Sci. Technol., 47 (2013) 5864–5871.
  37. S. Ahmadi, Ch.A. Igwegbe, S. Rahdar, The application of thermally activated persulfate for degradation of Acid Blue 92 in aqueous solution, Int. J. Ind. Chem., 10 (2019) 1–12.
  38. Z. Wei, F.A. Villamena, L.K. Weavers, Kinetics and mechanism of ultrasonic activation of persulfate: an in-situ EPR spin trapping study, Environ. Sci. Technol., 51 (2017) 3410–3417.
  39. J.M. Monteagudo, A. Duran, R. Gonzalez, A.J. Exposito, In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ ions, and H2O2, Appl. Catal., B, 176–177 (2015) 120–129.
  40. K. Fedorov, M. Plata-Gryl, J.A. Khan, G. Boczkaj, Ultrasoundassisted heterogeneous activation of persulfate and peroxymonosulfate by asphaltenes for the degradation of BTEX in water, J. Hazard. Mater., 397 (2020) 122804.
  41. F. Ghanbari, M. Moradi, Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review, Chem. Eng. J., 310 (2017) 41–62.
  42. C.H. Weng, K.L. Tsai, Ultrasound and heat enhanced persulfate oxidation activated with Fe0 aggregate for the decolorization of C.I. Direct Red 23, Ultrason. Sonochem., 29 (2016) 11–18.
  43. P. Zawadzki, E. Kudlek, M. Dudziak, Kinetics of the photocatalytic decomposition of bisphenol A on modified photocatalysts, J. Ecol. Eng., 19 (2018) 260–268.
  44. E. Kudlek, M. Dudziak, G. Kamińska, J. Bohdziewicz, Kinetics of the photocatalytic degradation of selected organic micropollutants in the water environment, J. Ecol. Eng., 18 (2017) 75–82.
  45. L.W. Hou, H. Zhang, L.G. Wang, L. Chen, Y.D. Xiong, X.F. Xue, Removal of sulfamethoxazole from aqueous solution by sonoozonation in the presence of a magnetic catalyst, Sep. Purif. Technol., 117 (2013) 46–52.
  46. M.R. Wright, An Introduction to Chemical Kinetics, John Wiley and Sons, England, 2004.
  47. J.P. Zotesso, E.S. Cossich, V. Janeiro, C.R.G. Tavares, Treatment of hospital laundry wastewater by UV/H2O2 process, Environ. Sci. Pollut. Res., 24 (2017) 6278–6287.
  48. F. Liu, P. Yi, X. Wang, H. Gao, H. Zhang, Degradation of Acid Orange 7 by an ultrasound/ZnO-GAC/persulfate process, Sep. Purif. Technol., 194 (2018) 181–187.
  49. C. Cai, H. Zhang, X. Zhong, L.W. Hou, Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe-Co/SBA-15 catalyst for the degradation of Orange II in water, J. Hazard. Mater., 283 (2015) 70–79.
  50. K. Thangavadivel, M. Megharaj, A. Mudhoo, R. Naidu, Degradation of Organic Pollutants Using Ultrasound, S.K. Sharma, A. Mudhoo, Eds., Handbook on Application of Ultrasound: Sonochemistry for Sustainability, CRC Press, Taylor & Francis Group, 2011, pp. 447–474.
  51. P.S. Rao, E. Hayon, Redox potentials of free radicals. IV. Superoxide and hydroperoxy radicals O2 and HO2, J. Phys. Chem., 79 (1975) 397–402.
  52. A.M. Ocampo, Persulfate Activation by Organic Compounds, Washington State University, Washington, 2009, pp. 1–77.
  53. J.Y. Zhao, Y. Zhang, X. Quan, S. Chen, Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zerovalent iron and peroxydisulfate at ambient temperature, Sep. Purif. Technol., 71 (2010) 302–307.
  54. Y. Lu, X. Yang, L. Xu, Z. Wang, Y. X., G. Qian, Sulfate radicals from Fe3+/persulfate system for Rhodamine B degradation, Desal. Water Treat., 57 (2016) 1–10.
  55. S. Wang, Y. Jia, L. Song, H. Zhang, Decolorization and mineralization of Rhodamine B in aqueous solution with a triple system of cerium(IV)/H2O2/hydroxylamine, ACS Omega, 3 (2018) 18456–18465.
  56. Y. Fan, G. Chen, D. Li, Y. Luo, N. Lock, A.P. Jensen, A. Mamakhel, J. Mi, S.B. Iversen, Q. Meng, B.B. Iversen, Highly selective Deethylation of Rhodamine B on TiO2 prepared in supercritical fluids, Int. J. Photoenergy, 173865 (2012) 1–7.
  57. X. Hu, T. Moohamood, W. Ma, C. Chen, J. Zhao, Oxidative decomposition of Rhodamine B dye in the presence of VO2+ and/or Pt(IV) under Visible Light Irradiation: N-Deethylation, chromophore cleavage, and mineralization, J. Phys. Chem. B, 110 (2006) 26012–26018.
  58. C. Lops, A. Ancona, K. Di Cesare, B. Dumontel, N. Garino, G. Canavese, S. Hernandez, V. Cauda, Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO, Appl. Catal. B Environ., 243 (2019) 629–640.
  59. H. Wang, W. Guo, R. Yin, J. Du, Q. Wu, H. Luo, B. Liu, F. Sseguya, N. Ren, Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: insight into the electron transfer, radical oxidation and degradation pathways, Chem. Eng. J., 362 (2019) 561–569.
  60. Q. Wang, J. Lian, Q. Ma, Y. Bai, J. Tong, J. Zhong, R. Wang, H. Huang, B. Su, Photodegradation of Rhodamine B over a novel photocatalyst of feather keratin decorated CdS under visible light irradiation, New J. Chem., 9 (2015) 7112–7119.
  61. Y. Zhang, J. Zhou, Z. Li, Q. Feng, Photodegradation pathway of rhodamine B with novel Au nanorods @ ZnO microspheres driven by visible light irradiation, J. Mater. Sci., 53 (2018) 3149–3162.
  62. R. Jinisha, R. Gandhimathi, S.T. Ramesh, P.V. Nidheesh, S. Velmathi, Removal of rhodamine B dye from aqueous solution by electro-Fenton process using iron-doped mesoporous silica as a heterogeneous catalyst, Chemosphere, 200 (2018) 446–454.
  63. L. Jiang, Y. Zhang, M. Zhou, L. Liang, K. Li, Oxidation of Rhodamine B by persulfate activated with porous carbon aerogel through a non-radical mechanism, J. Hazard. Mater., 358 (2018) 53–61.