References
- Global Water Crisis, The Facts, 2020. Available at: https://inweh.
unu.edu/wp-content/uploads/2017/11/Global-Water-Crisis-The-Facts.pdf (Accessed on: 10 May 2020).
- R. Tröger, P. Klöckner, L. Ahrens, K. Wiberg, Micropollutants
in drinking water from source to tap - method development
and application of a multiresidue screening method, Sci. Total
Environ., 627 (2018) 1404–1432.
- C.C. Montagner, F.F. Sodré, R.D. Acayaba, C. Vidal,
I. Campestrini, M.A. Locatelli, I.C. Pescara, A.F. Albuquerque,
G.A. Umbuzeiro, W.F. Jardim, Ten years-snapshot of the
occurrence of emerging contaminants in drinking, surface and
ground waters and wastewaters from São Paulo State, Brazil,
J. Braz. Chem. Soc., 30 (2019) 614–632.
- J. Kozak, M. Włodarczyk-Makuła, Comparison of the PAHs
degradation effectiveness using CaO2 or H2O2 under the
photo-Fenton reaction, Desal. Water Treat., 134 (2018) 57–64.
- J. Kozak, M. Włodarczyk-Maukła, The use of sodium
percarbonate in the Fenton reaction for the PAHs oxidation,
Civil Environ. Eng. Rep., 28 (2018) 124–139.
- K. Shakir, A.F. Elkafrawy, H.F. Ghoneimy, S.G. Elrab Beheir,
M. Refaat, Removal of rhodamine B (a basic dye) and thoron
(an acidic dye) from dilute aqueous solutions and wastewater
simulants by ion flotation, Water Res., 44 (2010) 1449–1461.
- L. Yu, Y. Mao, L. Qu, Simple voltammetric determination of
Rhodamine B by using the glassy carbon electrode in fruit
juice and preserved fruit, Food Anal. Methods, 6 (2013)
1665–1670.
- S.S. Imam, H.F. Babamale, A short review on the removal of
rhodamine B dye Rusing agricultural waste-based adsorbents,
Asian J. Chem. Sci., 7 (2020) 25–37.
- B. Dogan, M. Kerestecioglu, U. Ulku Yetis, Assessment of the
best available wastewater management techniques for a textile
mill: cost and benefit analysis, Water Sci. Technol., 61 (2010)
963–970.
- R. Zhang, P. Sun, T.H. Boyer, L. Zhao, C.H. Huang, Degradation
of pharmaceuticals and metabolite in synthetic human urine by
UV, UV/H2O2, and UV/PDS, Environ. Sci. Technol., 49 (2015)
3056–3066.
- S. Nasseri, A.H. Mahvi, M. Seyedsalehi, K. Yaghmaeian,
R. Nabizadeh, M. Aliomohammadi, G.H. Safari, Degradation
kinetics of tetracycline in aqueous solutions using peroxydisulfate
activated by ultrasound irradiation: effect of radical
scavenger and water matrix, J. Mol. Liq., 241 (2017) 704–714.
- S.A. Hakim, S. Jaber, N.Z. Eddine, A. Baalbaki, A. Ghauch, Data
for persulfate activation by UV light to degrade theophylline
in a water effluent, Data Brief, 27 (2019) 104614.
- Y. Ji, W. Xie, Y. Fan, Y. Shi, D. Kong, J. Lu, Degradation of
trimethoprim by thermo-activated persulfate oxidation:
reaction kinetics and transformation mechanisms, Chem. Eng.
J., 286 (2016) 16–24.
- J. Criquet, N.K. Vel Leitner, Electron beam irradiation of
aqueous solution of persulfate ions, Chem. Eng. J., 169 (2011)
258–262.
- O. Furman, A.L. Teel, R.J. Watts, Mechanism of base activation
of persulfate, Environ. Sci. Technol., 44 (2010) 6423–6428.
- M. Nie, C. Yan, M. Li, X. Wang, W. Bi, W. Dong, Degradation of
chloramphenicol by persulfate activated by Fe2+ and zerovalent
iron, Chem. Eng. J., 279 (2015) 507–515.
- G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the
interaction of transition metals with common oxidants, Environ.
Sci. Technol., 38 (2004) 3705–3712.
- W.S. Chen, Y.C. Su, Removal of dinitrotoluenes in wastewater
by sono-activated persulfate, Ultrason. Sonochem., 19 (2012)
921–927.
- X. Cheng, H. Guo, Y. Zhang, G. Korshin, B. Yang, Insights into
the mechanism of nonradical reactions of persulfate activated
by carbon nanotubes: activation performance and structurefunction
relationship, Water Res., 157 (2019) 406–414.
- P. Zawadzki, Decolorisation of Methylene Blue with sodium
persulfate activated with visible light in the presence of glucose
and sucrose, Water Air Soil Pollut., 230 (2019) 1–18.
- W. Wang, H. Wang, G. Li, T. An, H. Zhao, P.K. Wong,
Catalyst-free activation of persulfate by visible light for water
disinfection: efficiency and mechanisms, Water Res., 157 (2019)
106–118.
- H. Herrmann, On the photolysis of simple anions and neutral
molecules as sources of O–/OH, SOx– and Cl in aqueous solution,
Phys. Chem. Chem. Phys., 9 (2007) 3935–3964.
- R.J. Watts, M. Ahmad, A.K. Hohner, A.L. Teel, Persulfate
activation by glucose for in situ chemical oxidation, Water Res.,
133 (2018) 247–254.
- P. Gayathri, R.P.J. Dorathi, K. Palanivelu, Sonochemical
degradation of textile dyes in aqueous solution using sulphate
radicals activated by immobilized cobalt ions, Ultrason.
Sonochem., 17 (2010) 566–571.
- G.J. Price, A.A. Clifton, Sonochemical acceleration of persulfate
decomposition, Polymer, 37 (1996) 3971–3973.
- K.H. Chu, Y.A.J. Al-Hamadani, C.M. Park, G. Lee, M. Jang,
A. Jang, N. Her, A. Son, Y. Yoon, Ultrasonic treatment of
endocrine disrupting compounds, pharmaceuticals, and
personal care products in water: a review, Chem. Eng. J.,
327 (2017) 629–647.
- A.B. Kurukutla, P.S.S. Kumar, S. Anandan, T. Sivasankar,
Sonochemical degradation of Rhodamine B using oxidants,
hydrogen peroxide/peroxydisulfate/peroxymonosulfate, with
Fe2+ ion: proposed pathway and kinetics, Environ. Eng. Sci.,
32 (2015) 129–140.
- Rhodamine B. Available at: https://pubchem.ncbi.nlm.nih.gov/
compound/Rhodamine-B, 2020 (Accessed on: 10 May 2020).
- K.P. Wai, Y.L. Pang, S. Lim, C.H. Koo, W.C. Chong,
Hydrothermal modification of zinc oxide and titanium dioxide
for photocatalytic degradation of Rhodamine B, AIP Conf.
Proc., 2157 (2019) 020006.
- D. Melgoza, A. Hernandez-Ramirez, J.M. Peralta-Hernandez,
Comparative efficiencies of the decolourisation of methylene
blue Rusing Fenton’s and photo-Fenton’s reactions, Photochem.
Photobiol. Sci., 8 (2009) 596–599.
- D. Nakarada, M. Petkovic, Mechanistic insights on how
hydroquinone disarms OH and OOH radicals, Quantum
Chem., 118 (2018) 1–14.
- J. Wang, S. Wang, Activation of persulfate (PS) and
peroxymonosulfate (PMS) and application for the degradation
of emerging contaminants, Chem. Eng. J., 334 (2018) 1502–1517.
- H. Azarpira, M. Sadani, M. Abtahi, N. Vaezi, S. Rezaei, Z. Atafar,
S.M. Mohseni, M. Sarkhosh, M. Ghaderpoori, H. Keramati,
R.H. Pouyaj, A. Akbari, V. Fanai, Photo-catalytic degradation
of triclosan with UV/iodide/ZnO process: performance, kinetic,
degradation pathway, energy consumption and toxicology,
J. Photochem. Photobiol. A, 371 (2019) 423–432.
- G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical
review of rate constants for reactions of hydrated electrons,
hydrogen atoms and hydroxyl radicals (•OH/•O–) in aqueous
solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
- T. Cai, Y. Liu, L. Wang, W. Dong, H. Chen, W. Zeng, X. Xia,
G. Zeng, Activation of persulfate by photoexcited dye for
antibiotic degradation: radical and nonradical reactions, Chem.
Eng. J., 375 (2019) 122070.
- M. Ahmad, A.L. Teel, R.J. Watts, Mechanism of persulfate
activation by phenols, Environ. Sci. Technol., 47 (2013)
5864–5871.
- S. Ahmadi, Ch.A. Igwegbe, S. Rahdar, The application of
thermally activated persulfate for degradation of Acid Blue 92
in aqueous solution, Int. J. Ind. Chem., 10 (2019) 1–12.
- Z. Wei, F.A. Villamena, L.K. Weavers, Kinetics and mechanism
of ultrasonic activation of persulfate: an in-situ EPR spin
trapping study, Environ. Sci. Technol., 51 (2017) 3410–3417.
- J.M. Monteagudo, A. Duran, R. Gonzalez, A.J. Exposito, In situ
chemical oxidation of carbamazepine solutions using persulfate
simultaneously activated by heat energy, UV light, Fe2+ ions,
and H2O2, Appl. Catal., B, 176–177 (2015) 120–129.
- K. Fedorov, M. Plata-Gryl, J.A. Khan, G. Boczkaj, Ultrasoundassisted
heterogeneous activation of persulfate and peroxymonosulfate
by asphaltenes for the degradation of
BTEX in water, J. Hazard. Mater., 397 (2020) 122804.
- F. Ghanbari, M. Moradi, Application of peroxymonosulfate
and its activation methods for degradation of environmental
organic pollutants: review, Chem. Eng. J., 310 (2017) 41–62.
- C.H. Weng, K.L. Tsai, Ultrasound and heat enhanced persulfate
oxidation activated with Fe0 aggregate for the decolorization
of C.I. Direct Red 23, Ultrason. Sonochem., 29 (2016) 11–18.
- P. Zawadzki, E. Kudlek, M. Dudziak, Kinetics of the
photocatalytic decomposition of bisphenol A on modified
photocatalysts,
J. Ecol. Eng., 19 (2018) 260–268.
- E. Kudlek, M. Dudziak, G. Kamińska, J. Bohdziewicz,
Kinetics of the photocatalytic degradation of selected organic
micropollutants in the water environment, J. Ecol. Eng.,
18 (2017) 75–82.
- L.W. Hou, H. Zhang, L.G. Wang, L. Chen, Y.D. Xiong, X.F. Xue,
Removal of sulfamethoxazole from aqueous solution by sonoozonation
in the presence of a magnetic catalyst, Sep. Purif.
Technol., 117 (2013) 46–52.
- M.R. Wright, An Introduction to Chemical Kinetics, John
Wiley and Sons, England, 2004.
- J.P. Zotesso, E.S. Cossich, V. Janeiro, C.R.G. Tavares, Treatment
of hospital laundry wastewater by UV/H2O2 process, Environ.
Sci. Pollut. Res., 24 (2017) 6278–6287.
- F. Liu, P. Yi, X. Wang, H. Gao, H. Zhang, Degradation of Acid
Orange 7 by an ultrasound/ZnO-GAC/persulfate process,
Sep. Purif. Technol., 194 (2018) 181–187.
- C. Cai, H. Zhang, X. Zhong, L.W. Hou, Ultrasound enhanced
heterogeneous activation of peroxymonosulfate by a bimetallic
Fe-Co/SBA-15 catalyst for the degradation of Orange II in water,
J. Hazard. Mater., 283 (2015) 70–79.
- K. Thangavadivel, M. Megharaj, A. Mudhoo, R. Naidu,
Degradation of Organic Pollutants Using Ultrasound,
S.K. Sharma, A. Mudhoo, Eds., Handbook on Application
of Ultrasound: Sonochemistry for Sustainability, CRC Press,
Taylor & Francis Group, 2011, pp. 447–474.
- P.S. Rao, E. Hayon, Redox potentials of free radicals.
IV. Superoxide and hydroperoxy radicals •O2− and •HO2, J. Phys.
Chem., 79 (1975) 397–402.
- A.M. Ocampo, Persulfate Activation by Organic Compounds,
Washington State University, Washington, 2009, pp. 1–77.
- J.Y. Zhao, Y. Zhang, X. Quan, S. Chen, Enhanced oxidation of
4-chlorophenol using sulfate radicals generated from zerovalent
iron and peroxydisulfate at ambient temperature, Sep.
Purif. Technol., 71 (2010) 302–307.
- Y. Lu, X. Yang, L. Xu, Z. Wang, Y. X., G. Qian, Sulfate radicals
from Fe3+/persulfate system for Rhodamine B degradation,
Desal. Water Treat., 57 (2016) 1–10.
- S. Wang, Y. Jia, L. Song, H. Zhang, Decolorization and
mineralization of Rhodamine B in aqueous solution with a
triple system of cerium(IV)/H2O2/hydroxylamine, ACS Omega,
3 (2018) 18456–18465.
- Y. Fan, G. Chen, D. Li, Y. Luo, N. Lock, A.P. Jensen,
A. Mamakhel, J. Mi, S.B. Iversen, Q. Meng, B.B. Iversen, Highly
selective Deethylation of Rhodamine B on TiO2 prepared in
supercritical fluids, Int. J. Photoenergy, 173865 (2012) 1–7.
- X. Hu, T. Moohamood, W. Ma, C. Chen, J. Zhao, Oxidative
decomposition of Rhodamine B dye in the presence of VO2+
and/or Pt(IV) under Visible Light Irradiation: N-Deethylation,
chromophore cleavage, and mineralization, J. Phys. Chem. B,
110 (2006) 26012–26018.
- C. Lops, A. Ancona, K. Di Cesare, B. Dumontel, N. Garino,
G. Canavese, S. Hernandez, V. Cauda, Sonophotocatalytic
degradation mechanisms of Rhodamine B dye via radicals
generation by micro- and nano-particles of ZnO, Appl. Catal. B
Environ., 243 (2019) 629–640.
- H. Wang, W. Guo, R. Yin, J. Du, Q. Wu, H. Luo, B. Liu, F. Sseguya,
N. Ren, Biochar-induced Fe(III) reduction for persulfate
activation in sulfamethoxazole degradation: insight into the
electron transfer, radical oxidation and degradation pathways,
Chem. Eng. J., 362 (2019) 561–569.
- Q. Wang, J. Lian, Q. Ma, Y. Bai, J. Tong, J. Zhong, R. Wang,
H. Huang, B. Su, Photodegradation of Rhodamine B over a
novel photocatalyst of feather keratin decorated CdS under
visible light irradiation, New J. Chem., 9 (2015) 7112–7119.
- Y. Zhang, J. Zhou, Z. Li, Q. Feng, Photodegradation pathway
of rhodamine B with novel Au nanorods @ ZnO microspheres
driven by visible light irradiation, J. Mater. Sci., 53 (2018)
3149–3162.
- R. Jinisha, R. Gandhimathi, S.T. Ramesh, P.V. Nidheesh,
S. Velmathi, Removal of rhodamine B dye from aqueous
solution by electro-Fenton process using iron-doped
mesoporous silica as a heterogeneous catalyst, Chemosphere,
200 (2018) 446–454.
- L. Jiang, Y. Zhang, M. Zhou, L. Liang, K. Li, Oxidation of
Rhodamine B by persulfate activated with porous carbon
aerogel through a non-radical mechanism, J. Hazard. Mater.,
358 (2018) 53–61.