References
- J. Wang, J. He, H. Chen, Assessment of groundwater
contamination risk using hazard quantification, a modified
drastic model and groundwater value, Beijing Plain, China, Sci.
Total Environ., 432 (2012) 216–226.
- H. Huan, B.T. Zhang, H. Kong, M. Li, W. Wang, B. Xi, G. Wang,
Comprehensive assessment of groundwater pollution risk
based on HVF model: a case study in Jilin City of northeast
China, Sci. Total Environ., 628–629 (2018) 1518–1530.
- D. Wilson, A. Fernández, Y. Zayas, Development and validation
of an anemometric titration method for the determination of
the sulphate ion in natural and waste water samples, Rev. Cub.
Qca., 19 (2007) 28–33.
- E. Nariyan, C. Wolkersdorfer, M. Sillanpá, Sulphate removal
from acid mine water from the deepest active European mine
by precipitation and various electrocoagulation configurations,
J. Environ. Manage., 227 (2018) 162–171.
- F. Li, J. Zhu, X. Deng, Y. Zhao, S. Li, Assessment and uncertainty
analysis of groundwater risk, Environ. Res., 160 (2018) 140–151.
- C.T. Benatti, C.R.G. Tavares, E. Lenzi, Sulphate removal from
waste chemicals by precipitation, J. Environ. Manage., 90 (2009)
504–511.
- S. Tait, W.P. Clarkeb, J. Keller, D. Batstonea, Sulphate removal
from wastewater by mixed oxide-LDH, J. Water Res., 43 (2009)
762–772.
- E. Nixdorf, Y. Sun, M. Lin, O. Kolditz, Development and
application of a novel method for regional assessment of
groundwater contamination risk in the Songhua River Basin,
Sci. Total Environ., 605–606 (2017) 598–609.
- C.A. Basha, S.J. Selvi, E. Ramasamy, S. Chellammal, Removal
of arsenic and sulphate from the copper smelting industrial
effluent, Chem. Eng. J., 141 (2008) 89–98.
- J.P. Maree, H.A. Greben, M. Beer, Treatment of acid and
sulphate-rich effluents in an integrated biological/chemical
process, Water SA, 30 (2004) 183–189.
- J.H. Ahn, K.H. Choo, H.S. Park, Reverse osmosis membrane
treatment of acidic etchant wastewater: effect of neutralization
and polyelectrolyte coating on nitrate removal, J. Membr. Sci.,
310 (2008) 296–302.
- V.K. Gupta, I. Ali, V.K. Saini, Adsorption studies on the
removal of vertigo blue 49 and orange DNA 13 from aqueous
solutions using carbon slurry developed from a waste
material, J. Colloid Interface Sci., 315 (2007) 87–93.
- S. Montoya-Suarez, F. Colpas-Castillo, E. Meza-Fuentes,
J. Rodríguez-Ruiz, R. Fernandez-Maestre, Activated carbons
from waste of oil-palm kernel shells, sawdust and tannery
leather scraps and application to chromium (VI), phenol, and
methylene blue dye adsorption, Water Sci. Technol., 73 (2016)
21–27.
- O. Primera-Pedrozo, F. Colpas-Castillo, E. Meza-Fuentes,
R. Fernández-Maestre, Activated carbons from sugar cane
bagasse and corn husk for the adsorption of cadmium and
lead, Rev. Acad. Colomb. Cienc. Exact. Fís. Nat., 35 (2011)
387–396.
- F. Cavani, F. Trifiro, A. Vaccari, Hydrotalcite-type anionic
clays: preparation, properties and applications, Catal. Today,
11 (1991) 173–302.
- J. Rodríguez-Ruiz, S. Osorio-Herrera, E. Meza-Fuentes, Effect
of zinc substitution by nickel on hydrotalcite-type solids,
Matéria, 25 (2020) 1–10.
- E. Meza-Fuentes, J. Rodríguez-Ruiz, C. Solano-Polo, M. Rangel,
A. Faro, Monitoring the structural and textural changes of
Ni-Zn-Al hydrotalcites under heating, Thermochim. Acta,
687 (2020) 1–9, doi: 10.1016/j.tca.2020.178594.
- G.Z. Kyzas, K.A. Matis, Nanoadsorbents for pollutants
removal: a review, J. Mol. Liq., 203 (2015) 159–168.
- J. Kloprogge, D. Wharton, L. Hickey, R. Frost, Infrared and
Raman study of interlayer anions CO32−, NO3−, SO42− and ClO4−
in Mg/Al-hydrotalcite, Am. Mineral., 87 (2002) 623–629.
- H. Schaper, J. Berg-Slot, W. Stork, Stabilized magnesia: a novel
catalyst (support) material, Appl. Catal., 54 (1989) 79–90.
- X. Ruan, S. Huang, H. Chen, G. Qian, Sorptión of aqueous
organic contaminants onto dodecyl sulphate intercalated
magnesium iron layered double hydroxide, Appl. Clay Sci.,
72 (2013) 96–103.
- K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti,
J. Rouquerol, T. Siemienewska, Reporting physisorption
data for gas/solid systems, with special reference to the
determination of surface area and porosity, Pure Appl. Chem.,
57 (1985) 603–619.
- U. Costantino, V. Ambrogi, M. Nocchetti, L. Perioli, Hydrotalcitelike
compounds: versatile layered hosts of molecular anions
with biological activity, Microporous Mesoporous Mater.,
107 (2008) 149–160.
- E. Meza-Fuentes, J. Rodriguez-Ruiz, M. Rangel, Characteristics
of NiO present in solids obtained from hydrotalcites based on
Ni/Al and Ni-Zn/Al, Rev. Fac. Nac. Minas. DYNA, 86 (2019)
58–65.
- A. Halajnia, S. Oustan, N. Najafi, A.R. Khataee, A. Lakzian,
Adsorption–desorption characteristics of nitrate, phosphate
and sulphate on Mg–Al layered double hydroxide, Appl.
Clay Sci., 80 (2013) 305–312.
- W.L. Yan, R. Bai, Adsorption of lead and humic acid on
chitosan hydrogel beads, Water Res., 39 (2005) 688–698.
- W. Zhou, B. Gao, Q. Yue, L. Liu, Y. Wang, Al-Ferron kinetics
and quantitative calculation of Al(III) species in polyaluminum
chloride coagulants, Colloids Surf., A, 278 (2006)
235–240.
- E. Wibowo, M. Rokhmat, M. Abdullah, Reduction of seawater
salinity by natural zeolite (Clinoptilolite): adsorption
isotherms, thermodynamics and kinetics, Desalination, 409
(2017) 146–156.