References

  1. J. Wang, J. He, H. Chen, Assessment of groundwater contamination risk using hazard quantification, a modified drastic model and groundwater value, Beijing Plain, China, Sci. Total Environ., 432 (2012) 216–226.
  2. H. Huan, B.T. Zhang, H. Kong, M. Li, W. Wang, B. Xi, G. Wang, Comprehensive assessment of groundwater pollution risk based on HVF model: a case study in Jilin City of northeast China, Sci. Total Environ., 628–629 (2018) 1518–1530.
  3. D. Wilson, A. Fernández, Y. Zayas, Development and validation of an anemometric titration method for the determination of the sulphate ion in natural and waste water samples, Rev. Cub. Qca., 19 (2007) 28–33.
  4. E. Nariyan, C. Wolkersdorfer, M. Sillanpá, Sulphate removal from acid mine water from the deepest active European mine by precipitation and various electrocoagulation configurations, J. Environ. Manage., 227 (2018) 162–171.
  5. F. Li, J. Zhu, X. Deng, Y. Zhao, S. Li, Assessment and uncertainty analysis of groundwater risk, Environ. Res., 160 (2018) 140–151.
  6. C.T. Benatti, C.R.G. Tavares, E. Lenzi, Sulphate removal from waste chemicals by precipitation, J. Environ. Manage., 90 (2009) 504–511.
  7. S. Tait, W.P. Clarkeb, J. Keller, D. Batstonea, Sulphate removal from wastewater by mixed oxide-LDH, J. Water Res., 43 (2009) 762–772.
  8. E. Nixdorf, Y. Sun, M. Lin, O. Kolditz, Development and application of a novel method for regional assessment of groundwater contamination risk in the Songhua River Basin, Sci. Total Environ., 605–606 (2017) 598–609.
  9. C.A. Basha, S.J. Selvi, E. Ramasamy, S. Chellammal, Removal of arsenic and sulphate from the copper smelting industrial effluent, Chem. Eng. J., 141 (2008) 89–98.
  10. J.P. Maree, H.A. Greben, M. Beer, Treatment of acid and sulphate-rich effluents in an integrated biological/chemical process, Water SA, 30 (2004) 183–189.
  11. J.H. Ahn, K.H. Choo, H.S. Park, Reverse osmosis membrane treatment of acidic etchant wastewater: effect of neutralization and polyelectrolyte coating on nitrate removal, J. Membr. Sci., 310 (2008) 296–302.
  12. V.K. Gupta, I. Ali, V.K. Saini, Adsorption studies on the removal of vertigo blue 49 and orange DNA 13 from aqueous solutions using carbon slurry developed from a waste material, J. Colloid Interface Sci., 315 (2007) 87–93.
  13. S. Montoya-Suarez, F. Colpas-Castillo, E. Meza-Fuentes, J. Rodríguez-Ruiz, R. Fernandez-Maestre, Activated carbons from waste of oil-palm kernel shells, sawdust and tannery leather scraps and application to chromium (VI), phenol, and methylene blue dye adsorption, Water Sci. Technol., 73 (2016) 21–27.
  14. O. Primera-Pedrozo, F. Colpas-Castillo, E. Meza-Fuentes, R. Fernández-Maestre, Activated carbons from sugar cane bagasse and corn husk for the adsorption of cadmium and lead, Rev. Acad. Colomb. Cienc. Exact. Fís. Nat., 35 (2011) 387–396.
  15. F. Cavani, F. Trifiro, A. Vaccari, Hydrotalcite-type anionic clays: preparation, properties and applications, Catal. Today, 11 (1991) 173–302.
  16. J. Rodríguez-Ruiz, S. Osorio-Herrera, E. Meza-Fuentes, Effect of zinc substitution by nickel on hydrotalcite-type solids, Matéria, 25 (2020) 1–10.
  17. E. Meza-Fuentes, J. Rodríguez-Ruiz, C. Solano-Polo, M. Rangel, A. Faro, Monitoring the structural and textural changes of Ni-Zn-Al hydrotalcites under heating, Thermochim. Acta, 687 (2020) 1–9, doi: 10.1016/j.tca.2020.178594.
  18. G.Z. Kyzas, K.A. Matis, Nanoadsorbents for pollutants removal: a review, J. Mol. Liq., 203 (2015) 159–168.
  19. J. Kloprogge, D. Wharton, L. Hickey, R. Frost, Infrared and Raman study of interlayer anions CO32−, NO3, SO42− and ClO4 in Mg/Al-hydrotalcite, Am. Mineral., 87 (2002) 623–629.
  20. H. Schaper, J. Berg-Slot, W. Stork, Stabilized magnesia: a novel catalyst (support) material, Appl. Catal., 54 (1989) 79–90.
  21. X. Ruan, S. Huang, H. Chen, G. Qian, Sorptión of aqueous organic contaminants onto dodecyl sulphate intercalated magnesium iron layered double hydroxide, Appl. Clay Sci., 72 (2013) 96–103.
  22. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemienewska, Reporting physisorption data for gas/solid systems, with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  23. U. Costantino, V. Ambrogi, M. Nocchetti, L. Perioli, Hydrotalcitelike compounds: versatile layered hosts of molecular anions with biological activity, Microporous Mesoporous Mater., 107 (2008) 149–160.
  24. E. Meza-Fuentes, J. Rodriguez-Ruiz, M. Rangel, Characteristics of NiO present in solids obtained from hydrotalcites based on Ni/Al and Ni-Zn/Al, Rev. Fac. Nac. Minas. DYNA, 86 (2019) 58–65.
  25. A. Halajnia, S. Oustan, N. Najafi, A.R. Khataee, A. Lakzian, Adsorption–desorption characteristics of nitrate, phosphate and sulphate on Mg–Al layered double hydroxide, Appl. Clay Sci., 80 (2013) 305–312.
  26. W.L. Yan, R. Bai, Adsorption of lead and humic acid on chitosan hydrogel beads, Water Res., 39 (2005) 688–698.
  27. W. Zhou, B. Gao, Q. Yue, L. Liu, Y. Wang, Al-Ferron kinetics and quantitative calculation of Al(III) species in polyaluminum chloride coagulants, Colloids Surf., A, 278 (2006) 235–240.
  28. E. Wibowo, M. Rokhmat, M. Abdullah, Reduction of seawater salinity by natural zeolite (Clinoptilolite): adsorption isotherms, thermodynamics and kinetics, Desalination, 409 (2017) 146–156.