References

  1. R. Shokoohi, A.J. Jafari, A. Dargahi, Z. Torkshavand, Study of the efficiency of bio-filter and activated sludge (BF/AS) combined process in phenol removal from aqueous solution: determination of removing model according to response surface methodology (RSM), Desal. Water Treat., 77 (2017) 256–263.
  2. Z. Yu, Q. Lin, Y. Gu, F. Du, X. Wang, F. Shi, C. Ke, M. Xiang, Y. Yu, Bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in wild marine fish from the coastal waters of the northern South China Sea: risk assessment for human health, Ecotoxicol. Environ. Saf., 180 (2019) 742–748.
  3. Y. Hu, Y. Xia, F. Di Maio, F. Yu, W. Yu, Investigation of polycyclic aromatic hydrocarbons (PAHs) formed in threephase products from the pyrolysis of various wastewater sewage sludge, J. Hazard. Mater., 389 (2020) 1–8, doi: 10.1016/j. jhazmat.2020.122045.
  4. B. Nas, M. Argun, T. Dolu, H. Ateş, E. Yel, S. Koyuncu, S. Dinç, M.J. Kara, Occurrence, loadings and removal of EU-priority polycyclic aromatic hydrocarbons (PAHs) in wastewater and sludge by advanced biological treatment, stabilization pond and constructed wetland, J. Environ. Manage., 268 (2020) 1–9, doi: 10.1016/j.jenvman.2020.110580.
  5. X. Xie, Y. Zhang, W. Huang, S.J. Huang, Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation, J. Environ. Sci., 24 (2012) 821–826.
  6. S.A. Mokhtari, M. Farzadkia, A. Esrafili, R.R. Kalantari, M. Gholami, Application of dispersive liquid-liquid microextraction as a simple assisted clean-up and preconcentration technique for GC/MS determination of selected PAHs extracted from sewage sludge by Soxhlet and ultrasound assisted extraction method, Desal. Water Treat., 66 (2017) 176–183.
  7. C. Zhang, Y. Li, C. Wang, Z. Feng, Z. Hao, W. Yu, T. Wang, B. Zou, Polycyclic aromatic hydrocarbons (PAHs) in marine organisms from two fishing grounds, South Yellow Sea, China: bioaccumulation and human health risk assessment, Mar. Pollut. Bull., 153 (2020) 1–9, doi: 10.1016/j.marpolbul.2020.110995.
  8. A. Mojiri, J.L. Zhou, A. Ohashi, N. Ozaki, T. Kindaichi, Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments, Sci. Total Environ., 696 (2019) 1–16, doi: 10.1016/j.scitotenv.2019.133971.
  9. A. Seid-Mohammadi, Z. Ghorbanian, G. Asgari, A. Dargahi, Degradation of CEX antibiotic from aqueous environment by US/S2O82–/NiO process: optimization using Taguchi method and kinetic studies, Desal. Water Treat., 171 (2019) 444–455.
  10. D. Zhao, X. Liao, X. Yan, S.G. Huling, T. Chai, H. Tao, Effect and mechanism of persulfate activated by different methods for PAHs removal in soil, J. Hazard. Mater., 254 (2013) 228–235.
  11. S. Alizadeh, H. Sadeghi, M. Vosoughi, A. Dargahi, S.A. Mokhtari, Removal of humic acid from aqueous media using sono-persulphate process: optimization and modelling with response surface methodology (RSM), Int. J. Environ. Anal. Chem., (2020) 1–15, doi: 10.1080/03067319.2020.1772777.
  12. M.R. Samarghandi, A. Dargahi, H. Zolghadr Nasab, E. Ghahramani, S. Salehi, Degradation of azo dye Acid Red 14 (AR14) from aqueous solution using H2O2/nZVI and S2O82–/nZVI processes in the presence of UV irradiation, Water Environ. Res., 92 (2020) 1173–1183.
  13. Z. Wang, Y. Shao, N. Gao, N. An, Degradation kinetic of dibutyl phthalate (DBP) by sulfate radical-and hydroxyl radical-based advanced oxidation process in UV/persulfate system, Sep. Purif. Technol., 195 (2018) 92–100.
  14. S.A. Mokhtari, M. Farzadkia, A. Esrafili, R.R. Kalantari, A.J. Jafari, M. Kermani, M. Gholami, Bisphenol A removal from aqueous solutions using novel UV/persulfate/H2O2/Cu system: optimization and modelling with central composite design and response surface methodology, J. Environ. Health Sci. Eng., 14 (2016) 25–31.
  15. C.J. Liang, C.J. Bruell, M.C. Marley, K. Sperry, Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1, 1, 1-trichloroethane (TCA) in aqueous systems and soil slurries, Soil Sediment Contam., 12 (2003) 207–228.
  16. K.C. Huang, R.A. Couttenye, G. Hoag, Kinetics of heatassisted persulfate oxidation of methyl tert-butyl ether (MTBE), Chemosphere, 49 (2002) 413–420.
  17. C. Liang, C.J. Bruell, M.C. Marley, K.L. Sperry, Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple, Chemosphere, 55 (2004) 1213–1223.
  18. S. Bougie, J.-S. Dube, Oxidation of dichlorobenzene isomers using the sodium persulphate subjected to a thermic action, J. Environ. Eng. Sci., 6 (2007) 397–407.
  19. Y. Yukselen-Aksoy, K. Reddy, Effect of soil composition on electrokinetically enhanced persulfate oxidation of polychlorobiphenyls, Electrochim. Acta, 86 (2012) 164–169.
  20. Y.Q. Zhang, X.Z. Du, W. Huang, Temperature effect on the kinetics of persulfate oxidation of p-chloroaniline, Chin. Chem. Lett., 22 (2011) 358–361.
  21. M. Yegane Badi, S. Fallah Jokandan, A. Esrafili, S. Yousefzadeh, E. Ahmadi, A. Azari, S. Mokhtari, S. Rezaei Nia, M. Gholami, Optimization of advanced oxidation process based on persulfate (UV/Na2S2O8/Fe2+) for phthalic acid removal from aqueous solutions with response surface methodology, J. Babol Univ. Med. Sci., 20 (2018) 13–21.
  22. D. Mohapatra, S. Brar, R. Tyagi, R. Surampalli, Physicochemical pre-treatment and biotransformation of wastewater and wastewater Sludge–Fate of bisphenol A, Chemosphere, 78 (2010) 923–941.
  23. H. Movahedyan, A.S. Mohammadi, A. Assadi, Comparison of different advanced oxidation processes degrading p-chlorophenol in aqueous solution, J. Environ. Health Sci. Eng., 6 (2009) 153–160.
  24. Y.C. Lee, S.-L. Lo, P.-T. Chiueh, D. Chang, Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate, Water Res., 43 (2009) 2811–2816.
  25. A. Dargahi, D. Nematollahi, G. Asgari, R. Shokoohi, A. Ansari, M.R. Samarghandi, Electrodegradation of 2,4-dichlorophenoxyacetic acid herbicide from aqueous solution using three-dimensional electrode reactor with G/β-PbO2 anode: Taguchi optimization and degradation mechanism determination, RSC Adv., 8 (2018) 39256–39268.
  26. D. Mingos, D. Baghurst, Applications of microwave dielectric heating effects to synthetic problems in chemistry, Chem. Soc. Rev., 20 (1991) 1–47.
  27. Y. Zhou, Y. Xiang, Y. He, Y. Yang, J. Zhang, L. Luo, H. Peng, C. Dai, F. Zhu, L. Tang, Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds, J. Hazard. Mater., 359 (2018) 396–407.
  28. Y. Gou, Q. Zhao, S. Yang, H. Wang, P. Qiao, Y. Song, Y. Cheng, Removal of polycyclic aromatic hydrocarbons (PAHs) and the response of indigenous bacteria in highly contaminated aged soil after persulfate oxidation, Ecotoxicol. Environ. Saf., 190 (2020) 1–9, doi: 10.1016/j.ecoenv.2019.110092.
  29. G. Karaca, Y. Tasdemir, Application of advanced oxidation processes for polycyclic aromatic hydrocarbons removal from municipal treatment sludge, J. Clean Soil Air Water, 43 (2015) 191–196.
  30. K. Dalziel, The chemical kinetics of enzyme reactions: By K.J. Laidler and P.S. Bunting. 2nd ed., 1973. Clarendon Press: Oxford University Press. Pp. 471.£13.00, Biochem. Educ., 2 (1974) 32–39, doi: 10.1016/0307-4412(74)90012-0.
  31. A. Bernal-Martinez, D. Patureau, J.-P. Delgenès, H.J. Carrère, Removal of polycyclic aromatic hydrocarbons (PAH) during anaerobic digestion with recirculation of ozonated digested sludge, J. Hazard. Mater., 62 (2009) 1145–1150.