References
- J. Cheng, J. Chen, W. Lin, Y. Liu, Y. Kong, Improved visible
light photocatalytic activity of fluorine and nitrogen co-doped
TiO2 with tunable nanoparticle size, Appl. Surf. Sci., 332 (2015)
573–580.
- X.L. Shao, W. Lu, R. Zhang, F. Pan, Enhanced photocatalytic
activity of TiO2-C hybrid aerogels for methylene blue degradation,
Sci. Rep., 13 (2013) 3018:1–9, doi: 10.1038/srep03018.
- R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for
environmental photocatalytic applications: a review, Ind.
Eng. Chem. Res., 52 (2013) 3581–3599.
- Q. Gao, F. Fang, S. Zhang, Y. Fang, X. Chen, S. Yang,
Hydrogenated F-doped TiO2 for photocatalytic hydrogen
evolution and pollutant degradation, Int. J. Hydrogen Energy,
44 (2019) 8011–8019.
- J. Yan, X. Li, F. Yang, X. Wang, W. Zhou, Y. Fang, S. Zhang,
F. Peng, S. Zhang, Design and preparation of CdS/H-3D-TiO2/Pt-wire photocatalysis system with enhanced visible-light
driven H2 evolution, Int. J. Hydrogen Energy, 42 (2017) 928–937.
- M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments
in photocatalytic water treatment technology: a review, Water
Res., 44 (2010) 2997–3027.
- N.R. Khalid, Z. Hong, E. Ahmed, Y. Zhang, H. Chan, M. Ahmad,
Synergistic effects of Fe and graphene on photocatalytic activity
enhancement of TiO2 under visible light, Appl. Surf. Sci.,
258 (2012) 5827–5834.
- Z. Li, H. Wang, L. Zi, J. Zhang, Y. Zhang, Preparation and
photocatalytic performance of magnetic TiO2–Fe3O4/graphene
(RGO) composites under VIS-light irradiation, Ceram. Int.,
411 (2015) 634–643.
- L. Deng, Y. Gu, W. Xu, Z. Ma, Synthesis of TiO2-graphene
composite for using as a photocatalyst, Chin. J. Appl. Chem.,
29 (2012) 942–947.
- L. Luo, X. Zhang, F. Ma, A. Zhang, L. Bian, X. Pan, F. Jiang,
Photocatalytic degradation of bisphenol A by TiO2-reduced
graphene oxide nanocomposites, React. Kinet. Mech. Catal.,
114 (2015) 311–322.
- M. Green, J. Xu, H. Liu, J. Zhao, K. Li, L. Liu, H. Qin, Y. Zhu,
D. Shen, X. Chen, Terahertz absorption of hydrogenated TiO2
nanoparticles, Mater. Today Phys., 4 (2018) 64–69.
- W. Chen, Q. Lin, S. Cheng, M. Wu, Y. Tian, K. Ni, Y. Bai, H. Ma,
Synthesis and adsorption properties of amphoteric adsorbent
HAx/CMC-yAl, Sep. Purif. Technol., 221(2019) 338–348.
- C. Liu, L. Zhang, R. Liu, Z. Gao, X. Yang, Z. Tu, F. Yng,
Z. Ye, L. Cui, C. Xu, Y. Li, Hydrothermal synthesis of N-doped
TiO2 nanowires and N-doped graphene heterostructures
with enhanced photocatalytic properties, J. Alloys Compd.,
656 (2016) 24–32.
- J. Li, D. Luo, C. Yang, S. He, S. Chen, J. Lin, L. Zhu, X. Li,
Copper(II) imidazolate frameworks as highly efficient
photocatalysts for reduction of CO2 into methanol under visible
light irradiation, J. Solid State Chem., 203 (2013) 154–159.
- L. Li, J. Xu, G. Li, X. Jia, Y. Li, F. Yang, L. Zhang, C. Xu, J. Gao,
Y. Liu, Z. Fang, Preparation of graphene nanosheets by shearassisted
supercritical CO2 exfoliation, Chem. Eng. J., 284 (2016)
78–84.
- H. Feng, R. Cheng, X. Zhao, X. Duan, J. Li, A low-temperature
method to produce highly reduced graphene oxide, Nat.
Commun., 4 (2013) 1539–1546.
- Q. Xu, J. Yu, J. Zhang, J. Zhang, G. Liu, Cubic anatase TiO2
nanocrystals with enhanced photocatalytic CO2 reduction
activity, Chem. Commun., 51 (2015) 7950–7953.
- Y. Zhang, Z. Zhao, J. Chen, L. Cheng, J. Chang, W. Sheng,
C. Hu, S. Cao, C-doped hollow TiO2 spheres: in situ synthesis,
controlled shell thickness, and superior visible-light
photocatalytic activity, Appl. Catal., B, 165 (2015) 715–722.
- T. Lavanya, K. Satheesh, M. Dutta, N.V. Jaya, N. Fukata,
Superior photocatalytic performance of reduced graphene
oxide wrapped electrospun anatase mesoporous TiO2
nanofiber, J. Alloys Compd, 615 (2014) 643–650.
- J. Yang, S. Mei, J.M.F. Ferreira, Hydrothermal synthesis of
nanosized titania powders: influence of peptization and
peptizing agents on the crystalline phases and phase transitions,
J. Am. Ceram. Soc., 83 (2000) 1361–1368.
- P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Liu,
TiO2@carbon core/shell nanofibers: controllable preparation
and enhanced visible photocatalytic properties, Nanoscale,
3 (2011) 2943–2949.
- R. Zukerman, L. Vradman, L. Titelman, L. Zeiri, N. Perkas,
A. Gedanken, M.V. Landau, M. Herskowite, Effect of SBA-15
microporosity on the inserted TiO2 crystal size determined by
Raman spectroscopy, Mater. Chem. Phys., 122 (2010) 53–59.
- A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri,
F. Mauri, S. Piscanec, D. Jiang, K. Novoselow, S. Roth, A. Geim,
Raman specturm of graphene layers, Phys. Rev. Lett., 97 (2006),
doi: 10.1103/PhysRevLett.97.187401.
- P. Dubey, P. Tripathi, R. Tiwari, A. Sinha, O. Srivastava,
Synthesis of reduced graphene oxide–TiO2 nanoparticle
composite systems and its application in hydrogen
production, Int. J. Hydrogen Energy, 39 (2014) 16282–16292.
- J. Huang, Q. Tang, W. Liao, G. Wang, W. Wei, C. Li, Green
preparation of expandable graphite and its application in
flame-resistance polymer elastomer, Ind. Eng. Chem. Res.,
56 (2017) 5253–5261.
- S. Lin, C. Shih, M. Strano, B. Daniel, Molecular insights into
the surface morphology, layering structure, and aggregation
kinetics of surfactant-stabilized graphene dispersions, J. Am.
Chem. Soc., 133 (2011) 12810–12823.
- L. Malard, M. Pimenta, G. Dresselhaus, M.S. Dresselhaus,
Raman spectroscopy in graphene, Phys. Rep., 473 (2009) 51–87.
- T. Peng, B. Liu, X. Gao, L. Luo, H. Sun, Preparation, quantitative
surface analysis, intercalation characteristics and industrial
implications of low temperature expandable graphite, Appl.
Surf. Sci., 444 (2018) 800–810.
- E. Vahidzadeh, S. Fatemi, A. Nouralishahi, Synthesis of
a nitrogen-doped titanium dioxide-reduced graphene
oxide nanocomposite for photocatalysis under visible light
irradiation, Particuology, 41 (2018) 48–57.
- F. Wu, W. Liu, J. Qiu, J. Li, W. Zhou, Y. Fang, S. Zhang, Enhanced
photocatalytic degradation and adsorption of methylene blue
via TiO2 nanocrystals supported on graphene-like bamboo
charcoa, Appl. Surf. Sci., 358 (2015) 425–435.
- Q. Dong, G. Wang, B. Qian, C. Hu, Y. Wang, J. Qiu, Electrospun
composites made of reduced graphene oxide and activated
carbon nanofibers for capacitive deionization, Electrochim.
Acta, 137 (2014) 388–394.
- A. Xu, Y. Gao, H. Liu, The preparation, characterization,
and their photocatalytic activities of rare-earth-doped TiO2
nanoparticles, J. Catal., 207 (2002) 151–157.
- H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite
as a high performance photocatalyst, ACS Nano, 4 (2010)
380–386.
- A. Nedoloujko, J. Kiwi, TiO2 speciation precluding mineralization
of 4-tert-butylpyridine accelerated mineralization via
Fenton photo-assisted reaction, Water Res., 34 (2000) 3277–3284.
- A.G. Rincón, C. Pulgarin, Effect of pH, inorganic ions matter
and H2O2 on E. coli K12 photocatalytic inactivation by TiO2
implications in solar water disinfection, Appl. Catal., B,
51 (2004) 283–302.
- Y. Zhang, Y. Tan, H. Stormer, K. Philip, Experimental
observation of the quantum Hall effect and Berry’s phase in
graphene, Nature, 438 (2005) 201–204.
- Q. Mao, D. Liu, G. Li, Q. Wang, C. Xue, Y. Bai, TiO2/SGNs as
photocatalyst for degradation of water pollutants, Desal.
Water Treat., 161 (2019) 171–180.
- P.M. Martins, V. Gomez, A.C. Lopes, C.J. Tavares, G. Botelho,
S. Irusta, Improving photocatalytic performance and
recyclability by development of Er-doped and Er/Pr-codoped
TiO2/poly(vinylidene difluoride)−trifluoroethylene composite
membranes, J. Phys. Chem. C, 118 (2014) 27944–27953.
- N. Bell, Y. Ng, A. Du, H. Coster, S. Smith, R. Amal, Understanding
the enhancement in photoelectrochemical properties of photocatalytically
prepared TiO2-reduced graphene oxide composite,
J. Phys. Chem. C, 115 (2011) 6004–6009.
- M. Allen, V. Tung, R. Kaner, Honeycomb carbon: a review of
graphene, Chem. Rev., 110 (2009) 132–145.