References

  1. J. Cheng, J. Chen, W. Lin, Y. Liu, Y. Kong, Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size, Appl. Surf. Sci., 332 (2015) 573–580.
  2. X.L. Shao, W. Lu, R. Zhang, F. Pan, Enhanced photocatalytic activity of TiO2-C hybrid aerogels for methylene blue degradation, Sci. Rep., 13 (2013) 3018:1–9, doi: 10.1038/srep03018.
  3. R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: a review, Ind. Eng. Chem. Res., 52 (2013) 3581–3599.
  4. Q. Gao, F. Fang, S. Zhang, Y. Fang, X. Chen, S. Yang, Hydrogenated F-doped TiO2 for photocatalytic hydrogen evolution and pollutant degradation, Int. J. Hydrogen Energy, 44 (2019) 8011–8019.
  5. J. Yan, X. Li, F. Yang, X. Wang, W. Zhou, Y. Fang, S. Zhang, F. Peng, S. Zhang, Design and preparation of CdS/H-3D-TiO2/Pt-wire photocatalysis system with enhanced visible-light driven H2 evolution, Int. J. Hydrogen Energy, 42 (2017) 928–937.
  6. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  7. N.R. Khalid, Z. Hong, E. Ahmed, Y. Zhang, H. Chan, M. Ahmad, Synergistic effects of Fe and graphene on photocatalytic activity enhancement of TiO2 under visible light, Appl. Surf. Sci., 258 (2012) 5827–5834.
  8. Z. Li, H. Wang, L. Zi, J. Zhang, Y. Zhang, Preparation and photocatalytic performance of magnetic TiO2–Fe3O4/graphene (RGO) composites under VIS-light irradiation, Ceram. Int., 411 (2015) 634–643.
  9. L. Deng, Y. Gu, W. Xu, Z. Ma, Synthesis of TiO2-graphene composite for using as a photocatalyst, Chin. J. Appl. Chem., 29 (2012) 942–947.
  10. L. Luo, X. Zhang, F. Ma, A. Zhang, L. Bian, X. Pan, F. Jiang, Photocatalytic degradation of bisphenol A by TiO2-reduced graphene oxide nanocomposites, React. Kinet. Mech. Catal., 114 (2015) 311–322.
  11. M. Green, J. Xu, H. Liu, J. Zhao, K. Li, L. Liu, H. Qin, Y. Zhu, D. Shen, X. Chen, Terahertz absorption of hydrogenated TiO2 nanoparticles, Mater. Today Phys., 4 (2018) 64–69.
  12. W. Chen, Q. Lin, S. Cheng, M. Wu, Y. Tian, K. Ni, Y. Bai, H. Ma, Synthesis and adsorption properties of amphoteric adsorbent HAx/CMC-yAl, Sep. Purif. Technol., 221(2019) 338–348.
  13. C. Liu, L. Zhang, R. Liu, Z. Gao, X. Yang, Z. Tu, F. Yng, Z. Ye, L. Cui, C. Xu, Y. Li, Hydrothermal synthesis of N-doped TiO2 nanowires and N-doped graphene heterostructures with enhanced photocatalytic properties, J. Alloys Compd., 656 (2016) 24–32.
  14. J. Li, D. Luo, C. Yang, S. He, S. Chen, J. Lin, L. Zhu, X. Li, Copper(II) imidazolate frameworks as highly efficient photocatalysts for reduction of CO2 into methanol under visible light irradiation, J. Solid State Chem., 203 (2013) 154–159.
  15. L. Li, J. Xu, G. Li, X. Jia, Y. Li, F. Yang, L. Zhang, C. Xu, J. Gao, Y. Liu, Z. Fang, Preparation of graphene nanosheets by shearassisted supercritical CO2 exfoliation, Chem. Eng. J., 284 (2016) 78–84.
  16. H. Feng, R. Cheng, X. Zhao, X. Duan, J. Li, A low-temperature method to produce highly reduced graphene oxide, Nat. Commun., 4 (2013) 1539–1546.
  17. Q. Xu, J. Yu, J. Zhang, J. Zhang, G. Liu, Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity, Chem. Commun., 51 (2015) 7950–7953.
  18. Y. Zhang, Z. Zhao, J. Chen, L. Cheng, J. Chang, W. Sheng, C. Hu, S. Cao, C-doped hollow TiO2 spheres: in situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity, Appl. Catal., B, 165 (2015) 715–722.
  19. T. Lavanya, K. Satheesh, M. Dutta, N.V. Jaya, N. Fukata, Superior photocatalytic performance of reduced graphene oxide wrapped electrospun anatase mesoporous TiO2 nanofiber, J. Alloys Compd, 615 (2014) 643–650.
  20. J. Yang, S. Mei, J.M.F. Ferreira, Hydrothermal synthesis of nanosized titania powders: influence of peptization and peptizing agents on the crystalline phases and phase transitions, J. Am. Ceram. Soc., 83 (2000) 1361–1368.
  21. P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Liu, TiO2@carbon core/shell nanofibers: controllable preparation and enhanced visible photocatalytic properties, Nanoscale, 3 (2011) 2943–2949.
  22. R. Zukerman, L. Vradman, L. Titelman, L. Zeiri, N. Perkas, A. Gedanken, M.V. Landau, M. Herskowite, Effect of SBA-15 microporosity on the inserted TiO2 crystal size determined by Raman spectroscopy, Mater. Chem. Phys., 122 (2010) 53–59.
  23. A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselow, S. Roth, A. Geim, Raman specturm of graphene layers, Phys. Rev. Lett., 97 (2006), doi: 10.1103/PhysRevLett.97.187401.
  24. P. Dubey, P. Tripathi, R. Tiwari, A. Sinha, O. Srivastava, Synthesis of reduced graphene oxide–TiO2 nanoparticle composite systems and its application in hydrogen production, Int. J. Hydrogen Energy, 39 (2014) 16282–16292.
  25. J. Huang, Q. Tang, W. Liao, G. Wang, W. Wei, C. Li, Green preparation of expandable graphite and its application in flame-resistance polymer elastomer, Ind. Eng. Chem. Res., 56 (2017) 5253–5261.
  26. S. Lin, C. Shih, M. Strano, B. Daniel, Molecular insights into the surface morphology, layering structure, and aggregation kinetics of surfactant-stabilized graphene dispersions, J. Am. Chem. Soc., 133 (2011) 12810–12823.
  27. L. Malard, M. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep., 473 (2009) 51–87.
  28. T. Peng, B. Liu, X. Gao, L. Luo, H. Sun, Preparation, quantitative surface analysis, intercalation characteristics and industrial implications of low temperature expandable graphite, Appl. Surf. Sci., 444 (2018) 800–810.
  29. E. Vahidzadeh, S. Fatemi, A. Nouralishahi, Synthesis of a nitrogen-doped titanium dioxide-reduced graphene oxide nanocomposite for photocatalysis under visible light irradiation, Particuology, 41 (2018) 48–57.
  30. F. Wu, W. Liu, J. Qiu, J. Li, W. Zhou, Y. Fang, S. Zhang, Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphene-like bamboo charcoa, Appl. Surf. Sci., 358 (2015) 425–435.
  31. Q. Dong, G. Wang, B. Qian, C. Hu, Y. Wang, J. Qiu, Electrospun composites made of reduced graphene oxide and activated carbon nanofibers for capacitive deionization, Electrochim. Acta, 137 (2014) 388–394.
  32. A. Xu, Y. Gao, H. Liu, The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles, J. Catal., 207 (2002) 151–157.
  33. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano, 4 (2010) 380–386.
  34. A. Nedoloujko, J. Kiwi, TiO2 speciation precluding mineralization of 4-tert-butylpyridine accelerated mineralization via Fenton photo-assisted reaction, Water Res., 34 (2000) 3277–3284.
  35. A.G. Rincón, C. Pulgarin, Effect of pH, inorganic ions matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2 implications in solar water disinfection, Appl. Catal., B, 51 (2004) 283–302.
  36. Y. Zhang, Y. Tan, H. Stormer, K. Philip, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature, 438 (2005) 201–204.
  37. Q. Mao, D. Liu, G. Li, Q. Wang, C. Xue, Y. Bai, TiO2/SGNs as photocatalyst for degradation of water pollutants, Desal. Water Treat., 161 (2019) 171–180.
  38. P.M. Martins, V. Gomez, A.C. Lopes, C.J. Tavares, G. Botelho, S. Irusta, Improving photocatalytic performance and recyclability by development of Er-doped and Er/Pr-codoped TiO2/poly(vinylidene difluoride)−trifluoroethylene composite membranes, J. Phys. Chem. C, 118 (2014) 27944–27953.
  39. N. Bell, Y. Ng, A. Du, H. Coster, S. Smith, R. Amal, Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite, J. Phys. Chem. C, 115 (2011) 6004–6009.
  40. M. Allen, V. Tung, R. Kaner, Honeycomb carbon: a review of graphene, Chem. Rev., 110 (2009) 132–145.