References

  1. Z. Hasan, S.H. Jhung, Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions, J. Hazard. Mater., 283 (2015) 329–339.
  2. J. Abdi, M. Vossoughi, N.M. Mahmoodi, I. Alemzadeh, Synthesis of amine-modified Zeolitic imidazolate framework-8, ultrasound-assisted dye removal, and modeling, Ultrason. Sonochem., 39 (2017) 550–564.
  3. Hazardous Substance Research Centers/South and Southwest Outreach Program (2005) Environmental Hazards of the Textile Industry. Environmental Update #24, Business Week [Citation Time(s):2].
  4. M.A. Kamal, S. Bibi, S.W. Bokhari, A.H. Siddique, T. Yasin, Synthesis and adsorptive characteristics of novel chitosan/ graphene oxide nanocomposite for dye uptake, React. Funct. Polym., 110 (2017) 21–29.
  5. S. Ghorai, A.K. Sarkar, A.B. Panda, S. Pal, Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent, Bioresour. Technol., 144 (2013) 485–491.
  6. B.C. Ventura-Camargo, M.A. Marin-Morales, Azo dyes: characterization and toxicity-a review, Text. Light Ind. Sci. Technol., 2 (2013) 86–103.
  7. R. Kant, Textile dyeing industry an environmental hazard, Nat. Sci., 4 (2012) 22–26.
  8. J. Abdi, M. Vossoughi, N. Mohammad Mahmoodi, I. Alemzadeh, Synthesis of metalorganic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal, Chem. Eng. J., 326 (2017) 1145–1158,
  9. D.T. Santos, B.F. Sarrouh, J.D. Rivaldia, A. Converti, S.S. Silva, Use of sugarcane bagasse as a biomaterial for cell immobilization for xylitol production, J. Food Eng., 86 (2008) 542–548.
  10. J.Q. Albarelli, D.T. Santos, S. Murphy, M. Oelgemöller, Use of Ca-alginate as a novel support for TiO2 immobilization in methylene blue decolorization, Water Sci. Technol., 60 (2009) 1081–1087.
  11. K. Thirumalai, S. Balachandran, M. Swaminathan, Superior photocatalytic, electrocatalytic, and self-cleaning applications of fly ash supported ZnO nanorods, Mater. Chem. Phys., 183 (2016) 191–200.
  12. K. Selvakumar, A. Raja, M. Arunpandian, K. Stalindurai, P. Rajasekaran, P. Sami, E.R. Nagarajan, M. Swaminathan, Efficient photocatalytic degradation of ciprofloxacin and bisphenol a under visible light using Gd2WO6 loaded ZnO/bentonite nanocomposites, Appl. Surf. Sci., 481 (2019) 1109–1119.
  13. K. Thirumalai, E.T.D. Kumar, R. Aravindhan, J.R. Rao, M. Swaminathan, Hierarchically structured bentonite loaded Bi2O3-ZnO and its multiple applications, Surf. Interfaces, 5 (2016) 30–38.
  14. D.P. Stankus, S.E. Lohse, J.E. Hutchison, J.A. Nason, Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents, Environ. Sci. Technol., 45 (2011) 3238–3244.
  15. S. Bibi, G.J. Price, T. Yasin, M. Nawaz, Eco-friendly synthesis and catalytic application of chitosan/gold/carbon nanotube nanocomposite films, RSC Adv., 6 (2016) 60180–60186.
  16. E. Guibal, Heterogeneous catalysis on chitosan-based materials: a review, Prog. Polym. Sci., 30 (2005) 71–109.
  17. H. Huang, X. Yang, Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate, Biomacromolecules, 5 (2004) 2340–2346.
  18. K. Norajit, K.M. Kim, G.H. Ryu, Comparative studies on the characterization and antioxidant properties of biodegradable alginate films containing ginseng extract, J. Food Eng., 98 (2010) 377–384.
  19. C. Jouannin, C. Vincent, I. Dez, A.C. Gaumont, T. Vincent, E. Guibal, Study of alginate-supported ionic liquid and Pd catalysts, Nanomaterials, 2 (2012) 31–53.
  20. M. Zeng, X. Yuan, Z. Yang, C. Qi, Novel macroporous palladium cation crosslinked chitosan membranes for heterogeneous catalysis application, Int. J. Biol. Macromol., 68 (2014) 189–197.
  21. A. Bibi, Sadiq-ur-Rehman, A. Yaseen, Alginate-nanoparticles composites: kinds, reactions and applications, Mater. Res. Express, 6 (2019) 092001.
  22. A. Bibi, Sadiq-ur-Rehman, R. Fiaz, T. Akhtar, M. Nawaz, S. Bibi, Effect of surfactants on swelling capacity and kinetics of alginate-chitosan/CNTs hydrogel, Mater. Res. Express, 6 (2019) 085065.
  23. G.J. Price, M. Nawaz, T. Yasin, S. Bibi, Sonochemical modification of carbon nanotubes for enhanced nanocomposite performance, Ultrason. Sonochem., 40 (2018) 123–130.
  24. M. Arjmand, K. Chizari, B. Krause, P. Pötschke, U. Sundararaj, Effect of synthesis catalyst on the structure of nitrogendoped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites, Carbon, 98 (2016) 358–372.
  25. B. Galindo, A. Benedito, E. Gimenez, V. Compañ, Comparative study between the microwave heating efficiency of carbon nanotubes versus multilayer graphene in polypropylene nanocomposites, Compos. Part B Eng., 98 (2016) 330–338.
  26. X. Wu, C. Lu, Y. Han, Z. Zhou, G. Yuan, X. Zhang, Cellulose nanowhisker modulated 3D the hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing applications, Compos. Sci. Technol., 124 (2016) 44–51.
  27. F. Karkeh-Abadi, S. Saber-Samandari, S. Saber-Samandari, The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of Co(II) ions from aqueous solutions, J. Hazard. Mater., 312 (2016) 224–233.
  28. L. Ai, M. Li, L. Li, Adsorption of methylene blue from aqueous solution with activated carbon/cobalt ferrite/alginate composite beads: kinetics, isotherms, and thermodynamics, J. Chem. Eng. Data, 56 (2011) 3475–3483.
  29. M. Ionita, M.A. Pandele, H. Iovu, Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties, Carbohydr. Polym., 94 (2013) 339–344.
  30. U.T. Khatoon, K.V. Rao, J.V.R. Rao, Y. Aparna, Synthesis, and Characterization of Silver Nanoparticles by Chemical Reduction Method, International Conference on Nanoscience, Engineering and Technology (ICNET), 228–30 Nov. 2011, Chennai, India, 2011.
  31. V.K. Vidhu, D. Philip, Catalytic degradation of organic dyes using biosynthesized silver nanoparticles, Micron, 56 (2014) 54–62.
  32. Y.G. Sun, Y.N. Xia, Plasmonics: Metallic Nanostructures and Their Optical Properties, Proceedings of SPIE, Vol. 5221, 2003, pp. 170–173.
  33. G. Mie, Contributions to the optics of turbid media, particularly of colloidal metal solutions, Ann. Phys., 25 (1908) 377–445.
  34. B.M. Gatehouse, S.E. Livingstone, R.S. Nyholm, The infrared spectra of some simple and complex carbonates, J. Chem. Soc., 3 (1958) 1–37.
  35. T.L. Slager, B.J. Lindgren, A.J. Mallmann, R.G. Greenler, Infrared spectra of the oxides and carbonates of silver, J. Phys. Chem., 76 (1972) 940–943.
  36. T. Shahwan, S.A. Sirriah, M. Nairat, E. Boyac, A.E. Eroglu, T.B. Scott, K.R. Hallam, Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes, Chem. Eng. J., 172 (2011) 258–266.
  37. J. Hedberg, M. Lundin, T. Lowe, E. Blomberg, S. Wold, I.O. Wallinder, Interactions between surfactants and silver nanoparticles of varying charges, J. Colloid Interface Sci., 369 (2012) 193–201.
  38. K. Vignesh, R. Priyanka, R. Hariharan, M. Rajarajan, A. Suganthi, Fabrication of CdS and CuWO4 modified TiO2 nanoparticles and their photocatalytic activity under visible light Irradiation, J. Ind. Eng. Chem., 20 (2014) 435–443.
  39. J. Santhanalakshmi, P. Venkatesan, Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of eosin-Y, J. Nanopart. Res., 13 (2011) 479–490.
  40. Z.C. Kadirovaa, K. Katsumata, T. Isobec, N. Matsushita, A. Naka-jima, K. Okada, Adsorption and photodegradation of methylene blue by iron oxide impregnated on granular activated carbons in an oxalate solution, Appl. Surf. Sci., 284 (2013) 72–79.
  41. Y.H. Chiu, T.F.M. Chang, C.Y. Chen, M. Sone, Y.J. Hsu, Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts, Catalysts, 9 (2019) 430.
  42. R. Rajesh, E. Sujanthi, S.S. Kumar, R. Venkatesan, designing versatile heterogeneous catalysts based on Ag and Au nanoparticles decorated on chitosan functionalized graphene oxide, Phys. Chem. Chem. Phys., 17 (2015) 11329–11340.
  43. A.M. Atta, Y.M. Moustafa, H.A. Al-Lohedan, A.O, Ezzat, A.I. Hashem, Methylene Blue catalytic degradation using silver and magnetite nanoparticles functionalized with a poly (ionic liquid) based on quaternized dialkylethanolamine with 2-acrylamido-2-methylpropane sulfonate-co-vinylpyrrolidone, ACS Omega, 5 (2020) 2829–2842.
  44. P. Sangpour, F. Hashemi, A.Z. Moshfegh, Photoenhanced degradation of methylene blue on cosputtered M:TiO2 (M = Au, Ag, Cu) nanocomposite systems: a comparative study, J. Phys. Chem. C, 114 (2010) 13955–13961.
  45. M. Sakir, M.S. Onses, Solid substrates decorated with Ag nanostructures for the catalytic degradation of methyl orange, Results Phys., 12 (2019) 1133–1141.
  46. E. Alzahrani, Photodegradation of eosin Y using silver-doped magnetic nanoparticles, Int. J. Anal. Chem., 2015 (2015) 1–11.