References

  1. M. Smisek, S. Cerney, Active Carbon: Manufacture, Properties and Applications, Elsevier, Amsterdam, 1970, pp. 286–290.
  2. T. Lee, C. Ooi, R. Othman, F. Yeoh, Activated carbon fiber - the hybrid of carbon fiber and activated carbon, Rev. Adv. Mater. Sci., 36 (2014) 118–136.
  3. X. Ge, Z. Wu, Y. Yan, G. Cravotto, B.C. Ye, Enhanced PAHs adsorption using iron-modified coal-based activated carbon via microwave radiation, J. Taiwan Inst. Chem. Eng., 64 (2016) 235–243.
  4. M.A. Yahya, Z. Al-Qodah, C.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review, Renewable Sustainable Energy Rev., 46 (2015) 218–235.
  5. L. Zhang, L. Tu, Y. Liang, Q. Chen, Coconut-based activated carbon fibers for efficient adsorption of various organic dyes, RSC Adv., 8 (2018) 42280–42291.
  6. N.H. Phan, S. Rio, C. Faur, L. Le Coq, P. Le Cloirec, T.H. Nguyen, Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications, Carbon, 44 (2006) 2569–2577.
  7. V.K. Gupta, P.J.M. Carrott, R. Singh, M. Chaudhary, S. Kushwaha, Cellulose: a review as natural, modified and activated carbon adsorbent, Bioresour. Technol., 216 (2016) 1066–1076.
  8. A. Jain, R. Balasubramanian, M.P. Srinivasan, Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review, Chem. Eng. J., 283 (2016) 789–805.
  9. H. Tounsadi, A. Khalidi, M. Abdennouri, N. Barka, Activated carbon from Diplotaxis Harra biomass: optimization of preparation conditions and heavy metal removal, J. Taiwan Inst. Chem. Eng., 59 (2016) 348–358.
  10. M. Asadullah, M.S. Kabir, M.B. Ahmed, N.A. Razak, N.S.A. Rasid, A. Aezzira, Role of microporosity and surface functionality of activated carbon in methylene blue dye from water, Korean J. Chem. Eng., 30 (2013) 2228–2234.
  11. A. Roy, S. Chakraborty, S.P. Kundu, R.K. Basak, S.B. Majumder, B. Adhikari, Improvement in mechanical properties of jute fibers through mild alkali treatment as demonstrated by utilization of the Weibull distribution model, Bioresour. Technol., 107 (2012) 222–228.
  12. S. Senthilkumaar, P.R. Varadarajan, K. Porkodi, C.V. Subbhuraam, Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies, J. Colloid Interface Sci., 284 (2005) 78–82.
  13. P.T. Williams, A.R. Reed, Development of activated carbon pore structure via physical and chemical activation of biomass fiber waste, Biomass Bioenergy, 30 (2006) 144–152.
  14. H. Ku, H. Wang, N. Pattarachaiyakoop, M. Trada, A review on the tensile properties of natural fiber reinforced polymer composites, Composites B, 42 (2011) 856–873.
  15. M. Ramesh, K. Palanikumar, K. Hemachandra Reddy, Mechanical property evaluation of sisal–jute–glass fiber reinforced, Composites B, 48 (2013) 1–9.
  16. A. Dąbrowski, Adsorption and Its Applications in Industry and Environmental Protection, Elsevier, Amsterdam, 1999, pp. 69–94.
  17. J.Y. Chen, Activated Carbon Fiber and Textiles, Woodhead Publishing, Cambridge, 2017, pp. 22–71.
  18. M.M. Tang, R. Bacon, Carbonization of cellulose fibers. 1. Low temperature pyrolysis, Carbon, 2 (1964) 211–214.
  19. M.A. Tadda, A. Ahsan, A. Shitu, M. Elsergany, T. Arunkumar, B. Jose, N.N. Nik, A review on activated carbon: process, application and prospects, J. Adv. Civ. Eng. Pract. Res., 2 (2016) 7–13.
  20. C.F.S. Rombaldo, A.C.L. Lisboa, M.O.A. Mendez, A.R. Coutinho, Brazilian natural fiber (jute) as raw material for activated carbon production, An. Acad. Bras. Cienc., 86 (2014) 2137–2144.
  21. X. Zhou, S.H. Ghaffar, W. Dong, O. Oladiran, M. Fan, Fracture and impact properties of short discrete jute fibre-reinforced cementitious composites, Mater. Des., 49 (2013) 35–47.
  22. A. Bledzki, J. Gassan, Composites reinforced with cellulose based fibres, Prog. Polym. Sci, 24 (1999) 221–274.
  23. J. Rosas, J. Bedia, J. Rodríguez-Mirasol, T. Cordero, Hempderived activated carbon fibers by chemical activation with phosphoric acid, Fuel, 88 (2009) 19–26.
  24. Y. Zhao, F. Fang, H.M. Xiao, Q.P. Feng, L.Y. Xiong, S.Y. Fu, Preparation of pore-size controllable activated carbon fibers from bamboo fibers with superior performance for xenon storage, Chem. Eng. J., 270 (2015) 528–534.
  25. K. Hina, H. Zou, W. Qian, D. Zuo, C. Yi, Preparation and performance comparison of cellulose-based activated carbon fibres, Cellulose, 25 (2017) 607–617.
  26. K.L. Chiu, D.H.L. Ng, Synthesis and characterization of cottonmade activated carbon fiber and its adsorption of methylene blue in water treatment, Biomass Bioenergy, 46 (2012) 102–110.
  27. E. Ekrami, F. Dadashian, M. Soleimani, Waste cotton fibers based activated carbon: optimization of process and product characterization, Fibers Polym., 15 (2014) 1855–1864.
  28. T.L. Silva, A.L. Cazetta, P.S.C. Souza, T. Zhang, T. Asefa, V.C. Almeida, Mesoporous activated carbon fibers synthesized from denim fabric waste: efficient adsorbents for removal of textile dye from aqueous solutions, J. Cleaner Prod., 171 (2018) 482–490.
  29. K.K. Beltrame, A.L. Cazetta, P.S.C. de Souza, L. Spessato, T.L. Silva, V.C. Almeida, Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves, Ecotoxicol. Environ. Saf., 147 (2018) 64–71.
  30. X. Ma, F. Zhang, J. Zhu, L. Yu, X. Liu, Preparation of highly developed mesoporous activated carbon fiber from liquefied wood using wood charcoal as additive and its adsorption of methylene blue from solution, Bioresour. Technol., 164 (2014) 1–6.
  31. A. Vargas, A.L. Cazetta, M. Kunita, T. Silva, V. Almeida, Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models, Chem. Eng. J., 168 (2011) 722–730.
  32. S. Ltenor, B. Carene, E. Emmanuel, J. Lambert, J. Ehrhardt, S. Gaspard, Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation, J. Hazard. Mater., 165 (2008) 1029–1039.
  33. F. Avelar, M. Bianchi, M. Goncalves, E. Mota, The use of Piassava fibers (Attalea funifera) in the preparation of activated carbon, Bioresour. Technol., 101 (2010) 4639–4645.
  34. C.U. Pittman, W. Jiang, Z.R. Yue, S. Gardner, L. Wang, H. Toghiani, C.A. Leon y Leon, Surface properties of electrochemically oxidized carbon fibers, Carbon, 37 (1999) 1797–1807.
  35. C.U. Pittman, W. Jiang, Z.R. Yue, C.A. Leon y Leon, Surface area and pore size distribution of microporous carbon fibers prepared by electrochemical oxidation, Carbon, 37 (1999) 85–96.
  36. L.G. Tang, J.L. Kardos, A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix, Polym. Compos., 18 (1997) 100–113.
  37. Z.R. Yue, W. Jiang, L. Wang, S.D. Gardner, C.U. Pittman, Surface characterization of electrochemically oxidized carbon fibers, Carbon, 37 (1999) 1785–1796.
  38. Z.R. Yue, W. Jiang, L. Wang, H. Toghiani, S.D. Gardner, C.U. Pittman, Adsorption of precious metal ions onto electrochemically oxidized carbon fibers, Carbon, 37 (1999) 1607–1618.
  39. J.C. Chen, I.R. Harrison, Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF), Carbon, 40 (2002) 25–45.
  40. M.S.A. Rahaman, A.F. Ismail, A. Mustafa, A review of heat treatment on polyacrylonitrile fiber, Polym. Degrad. Stab., 92 (2007) 1421.
  41. S. Mopoung, P. Amornsakchai, S. Somroop, Characterization of phosphoric acid modified activated carbon fiber from fiber waste of pineapple leaf fiber production processing, Carbon Sci. Technol., 8 (2016) 1–12.
  42. C.-I. Su, R.-S. Yeh, C.-L. Wang, Influence of flame retardant on manufacturing carbon fiber absorbents, Text. Res. J., 74 (2004) 966–969.
  43. C.-I. Su, C.-L. Wang, Optimum manufacturing conditions of activated carbon fiber absorbents. I. Effect of flame-retardant reagent concentration, Fibers Polym., 8 (2007) 477–481.
  44. X. Duan, C. Srinivasakannan, X. Wang, F. Wang, X. Liu, Synthesis of activated carbon fibers from cotton by microwave induced H3PO4 activation, J. Taiwan Inst. Chem. Eng., 70 (2017) 374–381.
  45. K.Y. Foo, B.H. Hameed, Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption, Chem. Eng. J., 166 (2011) 792–795.
  46. R. Ma, X. Qin, Z. Liu, Y. Fu, Adsorption property, kinetic and equilibrium studies of activated carbon fiber prepared from liquefied wood by ZnCl2 activation, Materials, 12 (2019) 1377.
  47. S. Zamani, N.S. Tabrizi, Removal of methylene blue from water by graphene oxide aerogel: thermodynamic, kinetic, and equilibrium modeling, Res. Chem. Intermed., 41 (2014) 7945–7963.
  48. H. Al-Aoh, R. Yahya, M.J. Maah, M.R. Bin Abas, Adsorption of methylene blue on activated carbon fiber prepared from coconut husk: isotherm, kinetics and thermodynamics studies, Desal. Water Treat., 52 (2013) 6720–6732.
  49. C. Djilani, R. Zaghdoudi, F. Djazi, B. Bouchekima, A. Lallam, A. Modarressi, M. Rogalski, Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon, J. Taiwan Inst. Chem. Eng., 53 (2015) 112–121.
  50. H. Marsh, D.C. Crawford, T.M. O’Grady, A. Wennerberg, Carbons of high surface area. A study by adsorption and high-resolution electron microscopy, Carbon, 20 (1982) 419–426.
  51. J. Maciá-Agulló, B.C. Moore, D. Cazorla-Amorós, A. Linares-Solano, Activation of coal tar pitch carbon fibres: physical activation vs. chemical activation, Carbon, 42 (2004) 1367–1370.
  52. H. Marsh, D.A. Taylor, J.R. Lander, Kinetic study of gasification by oxygen and carbon dioxide of pure and doped graphitizable carbons of increasing heat treatment temperature, Carbon, 19 (1981) 375–381.
  53. M.A. Daley, C.L. Mangun, J.A. DeBarrb, S. Riha, A.A. Lizzio, G.L. Donnals, J. Economy, Adsorption of SO2 onto oxidized and heat-treated activated carbon fibers (ACFS), Carbon, 35 (1997) 411–417.
  54. A. Oya, S. Yoshida, J. Alcañiz-Monge, A. Linares-Solano, Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt, Carbon, 33 (1995) 1085–1090.
  55. D. Das, V. Gaur, N. Verma, Removal of volatile organic compound by activated carbon fiber, Carbon, 42 (2004) 2949–2962.
  56. M. Suzuki, Activated carbon fiber: fundamentals and applications, Carbon, 32 (1994) 577–586.
  57. UNITIKA, Activated Carbon Fibers. Available at: https://www. unitika.co.jp/acf/e/products/a-carbon-fibers/ (Accessed on March 28, 2020).
  58. HP Materials Solutions Inc., Activated Carbon Fiber & Activated Carbon Felt. Available at: https://www.hpmsgraphite.com/ activatedcarbonfiber.html (Accessed on March 27, 2020).
  59. TOYOBO Co. Ltd., K-Filter (The Activated Carbon Fiber). Available at: https://www.toyobo-global.com/seihin/ac/filter/kfilter/# type (Accessed on March 28, 2020).
  60. M.E.A. Fidelis, T.V.C. Pereira, O.D.F.M. Gomes, F. De Andrade Silva, R.D. Toledo Filho, The effect of fiber morphology on the tensile strength of natural fibers, J. Mater. Res. Technol., 2 (2013) 149–157.