References
- N. Gordon, J. Economy, Nanometallic particles for oligodynamic
microbial disinfection, Nanotechnol. Appl. Clean
Water, 3 (2009) 3–15, doi: 10.1016/B978-0-8155-1578-4.50010-X.
- B. Horst, F.H.H. Brill, Antimicrobial efficacy of modern wound
dressings: oligodynamic bactericidal versus hydrophobic
adsorption effect, Wound Med., 5 (2014) 16–20.
- S. Rtimi, M. Pascu, R. Sanjines, C. Pulgarin, M. Ben-Simon,
A. Houas, J.C. Lavanchy, J. Kiwi, ZrNO–Ag co-sputtered
surfaces leading to E. coli inactivation under actinic light:
evidence for the oligodynamic effect, Appl. Catal., B, 138 (2013)
113–121.
- T. Schmidt-Braeklin, A. Streitbuerger, G. Gosheger, F. Boettner,
M. Nottrott, H. Ahrens, B. Moellenbeck, Silver-coated megaprostheses:
review of the literature, Eur. J. Orthop. Surg.
Traumatol., 27 (2017) 483–489.
- J.L. Clement, P.S Jarrett, Antibacterial silver, Met.-Based Drugs,
1 (1994) 467–482.
- B. Van Aken, L.S. Lin, Effect of the disinfection agent’s chlorine,
UV irradiation, silver ions, and TiO2 nanoparticles/near-UV
on DNA molecules, Water Sci. Technol., 64 (2011) 1226–1232.
- F.X. Abad, R.M. Pinto, J.M. Diez, A. Bosch, Disinfection
of human enteric viruses in water by copper and silver in
combination with low-levels of chlorine, Appl. Environ.
Microbiol., 60 (1994) 2377–2383.
- Q. Bao, D. Zhang, P. Qi, Synthesis and characterization of
silver nanoparticle and graphene oxide nanosheet composites
as a bactericidal agent for water disinfection, J. Colloid
Interface Sci., 360 (2011) 463–470.
- K. Zodrow, L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. Li,
P.J. Alvarez, Polysulfone ultrafiltration membranes impregnated
with silver nanoparticles show improved biofouling
resistance and virus removal, Water Res., 43 (2009) 715–723.
- W. Zhang, X.Z. Zhang, Adsorption of MS2 on oxide nanoparticles
affects chlorine disinfection and solar inactivation,
Water Res., 69 (2015) 59–67.
- H.Y. Zhang, V. Oyanedel-Craver, Comparison of the bacterial
removal performance of silver nanoparticles and a polymer
based quaternary amine functiaonalized silsesquioxane coated
point-of-use ceramic water filters, J. Hazard. Mater., 260 (2013)
272–277.
- H.Y. Zhang, V. Oyanedel-Craver, Evaluation of the disinfectant
performance of silver nanoparticles in different water chemistry
conditions, J. Environ. Eng. ASCE, 138 (2012) 58–66.
- M.F. Brugnera, M. Miyata, C.Q.F. Leite, M.V.B. Zanoni, Silver
ion release from electrodes of nanotubes of TiO2 impregnated
with Ag nanoparticles applied in photoelectrocatalytic disinfection,
J. Photochem. Photobiol., A, 278 (2014) 1–8.
- I. De la Rosa-Gomez, M.T. Olguin, D. Alcantara, Antibacterial
behavior of silver-modified clinoptilolite-heulandite rich tuff
on coliform microorganisms from wastewater in a column
system, J. Environ. Manage., 88 (2008) 853–863.
- L.P. Lukhele, R.W. Krause, Z.P. Nhlabatsi, B.B. Mamba,
M.N. Momba, Copper and silver impregnated carbon nanotubes
incorporated into cyclodextrin polyurethanes for the
removal of bacterial and organic pollutants in water, Desal.
Water Treat., 27 (2011) 299–307.
- O. Akhavan, E. Ghaderi, Self-accumulated Ag nanoparticles
on mesoporous TiO2 thin film with high bactericidal activities,
Surf. Coat. Technol., 204 (2010) 3676–3683.
- R. Bandyopadhyaya, M.V. Sivaiah, P.A. Shankar, Silverembedded
granular activated carbon as an antibacterial
medium for water purification, J. Chem. Technol. Biotechnol.,
83 (2008) 1177–1180.
- X.X. Zhao, T. Toyooka, Y. Ibuki, Synergistic bactericidal effect
by combined exposure to Ag nanoparticles and UVA, Sci.
Total Environ., 458 (2013) 54–62.
- S. Agnihotri, S. Mukherji, S. Mukherji, Immobilized silver
nanoparticles enhance contact killing and show highest
efficacy: elucidation of the mechanism of bactericidal action
of silver, Nanoscale, 5 (2013) 7328–7340.
- R.K. Sharma, S. Kumar, R.W. Ramteke, P.K. Ray, Disinfection
of drinking-water by filtration through silver impregnated
alumina, J. Environ. Sci. Health., Part A Environ. Sci. Eng. Toxic
Hazard. Subst. Control, 25 (1990) 479–486.
- M. Azimzadehirani, M. Elahifard, S. Haghighi, M. Gholami,
Highly efficient hydroxyapatite/TiO2 composites covered by
silver halides as E. coli disinfectant under visible light and
dark media, Photochem. Photobiol. Sci., 12 (2013) 1787–1794.
- N.T.T. Hoang, N.V. Suc, T.V. Nguyen, Bactericidal activities and
synergistic effects of Ag-TiO2 and Ag-TiO2-SiO2 nanomaterials
under UV-C and dark conditions, Int. J. Nanotechnol., 12 (2015)
367–379.
- S. Khan, I.A. Qazi, I. Hashmi, M.A. Awan, N.U.S.S. Zaidi,
Synthesis of silver-doped titanium TiO2 powder-coated surfaces
and its ability to inactivate Pseudomonas aeruginosa and Bacillus
subtilis, J. Nanomater., 2013 (2013), 1–9 doi: 10.1155/2013/531010.
- R. Khaydarov, R. Khaydarov, B. Yuldashev, Experience of
using energy-effective water disinfection devices, Water Supply
Emergency Situations, 1 (2007) 127–132.
- X. Qu, J. Brame, Q. Li, P.J. Alvarez, Nanotechnology for a
safe and sustainable water supply: enabling integrated water
treatment and reuse, Acc. Chem. Res., 46 (2013) 834–843.
- R. Manjumeena, D. Duraibabu, J. Sudha, P.T. Kalaichelvan,
Biogenic nanosilver incorporated reverse osmosis membrane
for antibacterial and antifungal activities against selected
pathogenic strains: an enhanced eco-friendly water disinfection
approach, J. Environ. Sci. Health., Part A Toxic Hazard. Subst.
Environ. Eng., 49 (2014) 1125–1133.
- M.L. Pedro-Botet, I. Sanchez, M. Sabria, N. Sopena, L. Mateu,
M. García-Núñez, C.R. Joly, Impact of copper and silver
ionization on fungal colonization of the water supply in health
care centers: implications for immunocompromised patients,
Clin. Infect. Dis., 45 (2007) 84–86.
- A. Alonso, X. Munoz-Berbel, N. Vigués, J. Macanás, M. Munoz,
J. Mas, D.N. Muraviev, Characterization of fibrous polymer
silver/cobalt nanocomposite with enhanced bactericide activity,
Langmuir, 28 (2012) 783–790.
- H. Basri, A.F. Ismail, M. Aziz, Polyethersulfone (PES)-silver
composite UF membrane: effect of silver loading and PVP
molecular weight on membrane morphology and antibacterial
activity, Desalination, 273 (2011) 72–80.
- H. Barani, M. Montazer, N. Samadi, T. Toliyat, Nano silver
entrapped in phospholipids membrane: synthesis, characteristics
and antibacterial kinetics, Mol. Membr. Biol.,
28 (2011) 206–215.
- E. Joyce, S.S. Phull, J.P. Lorimer, T.J. Mason, The development
and evaluation of ultrasound for the treatment of bacterial
suspensions. a study of frequency, power and sonication time
on cultured Bacillus species, Ultrason. Sonochem., 10 (2003)
315–318.
- P. Declerck, L. Vanysacker, A. Hulsmans, N. Lambert, S. Liers,
F. Ollevier, Evaluation of power ultrasound for disinfection
of both Legionella pneumophila and its environmental host
Acanthamoeba castellanii, Water Res., 44 (2010) 703–710.
- O. Ayyildiz, S. Sanik, B. Ileri, Effect of ultrasonic pretreatment
on chlorine dioxide disinfection efficiency, Ultrason. Sonochem.,
18 (2011) 683–688.
- G. Loraine, G. Chahine, C.T. Hsiao, J.K. Choi, P. Aley,
Disinfection of gram-negative and gram-positive bacteria
using DYNAJETS (R) hydrodynamic cavitating jets, Ultrason.
Sonochem., 19 (2012) 710–717.
- P.R. Gogate, S. Mededovic-Thagard, D. McGuire, G. Chapas,
J. Blackmon, R. Cathey, Hybrid reactor based on combined
cavitation and ozonation: from concept to practical reality,
Ultrason. Sonochem., 21 (2014) 590–598.
- V. Naddeo, M. Landi, V. Belgiorno, R.M.A. Napoli, Wastewater
disinfection by combination of ultrasound and ultraviolet
irradiation, J. Hazard. Mater., 168 (2009) 925–929.
- P.R. Gogate, Application of cavitational reactors for water
disinfection: current status and path forward, J. Environ.
Manage., 85 (2007) 801–815.
- T.J. Mason, S.S. Phull, J.P. Lorimer, Potential uses of ultrasound
in the biological decontamination of water, Ultrason.
Sonochem., 10 (2003) 319–323.
- S.S. Phull, A.P. Newman, J.P. Lorimer, B. Pollet, T.J. Mason,
The development and evaluation of ultrasound in the biocidal
treatment of water, Ultrason. Sonochem., 4 (1997) 157–164.
- S. Giannakis, S. Papoutsakis, E. Darakas, A. Escalas-Cañellas,
C. Pétrier, C. Pulgarin, Ultrasound enhancement of near-neutral
photo-Fenton for effective E. coli inactivation in wastewater,
Ultrason. Sonochem., 22 (2015) 515–526.
- E. Joyce, T.J. Mason, S.S. Phull, J.P. Lorimer, The development
and evaluation of electrolysis in conjunction with power
ultrasound for the disinfection of bacterial suspensions,
Ultrason. Sonochem., 10 (2003) 231–234.
- F.B. Karel, Disinfection of Klebsiella pneumoniae using ultrasonic
systems, J. Environ. Biol., 37 (2016) 10–13.
- F. Karel, Klebsiella pneumoniae disinfection with ultrasound
and hydrogen peroxides, Appl. Ecol. Environ. Res., 17 (2019)
4159–4169.
- M.A. Butkus, M.P. Labare, J.A. Starke, K. Moon, M. Talbot,
Use of aqueous silver to enhance inactivation of coliphage
MS-2 by UV disinfection, Appl. Environ. Microbiol., 70 (2004)
2848–2853.
- V.M. Gómez-López, M.I. Gil, A. Allende, J. Blancke,
L. Schouteten, M.V. Selma, Disinfection capacity of highpower
ultrasound against E. coli O157:H7 in process water
of the fresh-cut industry, Food Bioprocess Technol., 7 (2014)
3390–3397.
- E. Joyce, A. Al‐Hashimi, T.J. Mason, Assessing the effect of
different ultrasonic frequencies on bacterial viability using
flow cytometry, J. Appl. Microbiol., 110 (2011) 862–870.
- T.J. Mason, A.J. Cobley, J.E. Graves, D. Morgan, New evidence
for the inverse dependence of mechanical and chemical
effects on the frequency of ultrasound, Ultrason. Sonochem.,
18 (2011) 226–230.
- S. Koda, T. Kimura, T. Kondo, H.A. Mitome, A standard method
to calibrate sonochemical efficiency of an individual reaction
system, Ultrason. Sonochem., 10 (2003) 149–156.
- H. Inez, J.E. Thompson, Inactivation of Escherichia coli by
sonication at discrete ultrasonic frequencies, Water Res.,
34 (2000) 3888–3893.
- G. Matafonova, V. Batoev, Review on low-and high-frequency
sonolytic, sonophotolytic and sonophotochemical processes
for inactivating pathogenic microorganisms in aqueous media,
Water Res., 166 (2019) 1–11, doi: 10.1016/j.watres.2019.115085.
- K.Y. Yoon, J.H. Byeon, J.H. Park, J. Hwang, Susceptibility
constants of Escherichia coli and Bacillus subtilis to silver and
copper nanoparticles, Sci. Total Environ., 373 (2007) 572–575.
- S. Chernousova, M. Epple, Silver as antibacterial agent: ion,
nanoparticle, and metal, Angew. Chem. Int. Ed., 52 (2013)
1636–1653.
- D.K. Tiwari, J. Behari, Biocidal nature of combined treatment
of Ag-nanoparticle and ultrasonic irradiation in Escherichia coli DH5, Adv. Biol. Res., 3 (2009) 89–95.