References
- M. Salari, E.S. Salami, S.H. Afzali, M. Ehteshami, G.O. Conti,
Z. Derakhshan, S.N. Sheibani, Quality assessment and
artificial neural networks modeling for characterization of
chemical and physical parameters of potable water, Food
Chem. Technol., 118 (2018) 212–219.
- E.S. Salami, M. Ehteshami, Application of artificial neural
networks to estimating DO and salinity in San Joaquin River
basin, Desal. Water Treat., 57 (2016) 4888–4897.
- E.S. Salami, M. Salari, M. Ehteshami, N.T. Bidokhti, H. Ghadimi,
Application of artificial neural networks and mathematical
modeling for the prediction of water quality variables (case
study: southwest of Iran), Desal. Water Treat., 57 (2016)
27073–27084.
- P.G. Whitehead, Water Quality Modeling, Wiley StatsRef:
Statistics Reference Online: John Wiley & Sons, 2016, pp. 1–22.
- M. Yuceer, M.A. Coskun, Modeling water quality in rivers:
a case study of Beylerderesi river in Turkey, Appl. Ecol.
Environ. Res., 14 (2016) 383–395.
- M. Salari, M. Hosseinikheirabad, M. Ehteshami, S.N. Moaddeli,
E. Teymouri, Modeling of groundwater quality for drinking
and agricultural purpose: a case study in kahorestan plain,
J. Environ. Treat. Tech., 8 (2020) 346–352.
- Q. Wang, S. Li, P. Jia, C. Qi, F. Ding, A review of surface water
quality models, Sci. World J., 2013 (2013) 1–7.
- N. Rahmanian, S.H.B. Ali, M. Homayoonfard, N.J. Ali,
M. Rehan, Y. Sadef, A.S. Nizami, Analysis of physiochemical
parameters to evaluate the drinking water quality in the state
of Perak, Malaysia, J. Chem., 2015 (2015) 1–10.
- A. Moayedi, B. Yargholi, E. Pazira, H. Babazadeh, Investigated
of desalination of saline waters by using dunaliella salina algae
and its effect on water ions, Civ. Eng. J., 5 (2019) 2450–2460.
- M. Pal, N.R. Samal, P.K. Roy, M.B. Roy, Electrical conductivity
of lake water as environmental monitoring – a case study of
Rudrasagar Lake, IOSR J. Environ. Sci. Toxicol. Food Technol.,
9 (2015) 66–71.
- H.Y. Aldosky, S.M.H. Shamdeen, A new system for measuring
electrical conductivity of water as a function of admittance,
J. Electr. Bioimpedance, 2 (2011) 86–92.
- B. Tutmez, Z. Hatipoglu, U. Kaymak, Modelling electrical
conductivity of groundwater using an adaptive neuro-fuzzy
inference system, Comput. Geosci., 32 (2006) 421–433.
- M.A.S. Polash, M.A.S. Akil, M.T.U. Arif, M.A. Hossain, Effect
of salinity on osmolytes and relative water content of selected
rice genotypes, Trop. Plant Res., 5 (2018) 227–232.
- M.A. Nahian, A. Ahmed, A.N. Lázár, C.W. Hutton, M. Salehin,
P.K. Streatfield, Drinking water salinity associated health crisis
in coastal Bangladesh, Elem. Sci. Anthropocene, 6 (2018) 1–14.
- M.Z. Alam, L.C. Boggs, S. Mitra, M.M. Haque, J. Halsey,
M. Rokonuzzaman, B. Saha, M. Moniruzzaman, Effect of
salinity intrusion on food crops, livestock and fish species at
Kalapara coastal belt in Bangladesh, J. Food Qual., 2017 (2017)
1–23.
- S. Yousfi, M.D. Serret, J. Voltas, J.L. Araus, Effect of salinity
and water stress during the reproductive stage on growth, ion
concentrations, D13C, and D15N of durum wheat and related
amphiploids, J. Exp. Bot., 61 (2010) 3529–3542.
- N. Qin, Y. Wu, H.W. Wang, Y.Y. Wang, Experimental study and
numerical simulation of the salinity effect on water-freezing
point and ice-melting rate, IOP Conf. Ser.: Mater. Sci. Eng.,
283 (2017) 1–8.
- T.H. Kim, J.H. Kang, S.H. Kim, I.S. Choi, K.H. Chang,
J.M. Oh, K.H. Kim, Impact of salinity change on water quality
variables from the sediment of an artificial lake under anaerobic
conditions, Sustainability, 9 (2017) 1–8.
- S. Thirumalini, K. Joseph, Correlation between electrical conductivity
and total dissolved solids in natural waters, Malaysian
J. Sci., 28 (2009) 55–61.
- A.F. Rusydi, Correlation between conductivity and total
dissolved solid in various type of water: a review, Earth Environ.
Sci., 118 (2018) 1–6.
- L.N. Nthunya, S. Maifadi, B.B. Mamba, A.R. Verliefde,
S.D. Mhlanga, Spectroscopic determination of water salinity
in brackish surface water in Nandoni dam, at Vhembe district,
Limpopo province, South Africa, Water, 990 (2018) 1–13.
- M.C. McCutcheon, H.J. Farahani, J.D. Stednick, G.W. Buchleiter,
T.R. Green, Effect of soil water on apparent soil electrical
conductivity and texture relationships in a dry land field,
Biosyst. Eng., 94 (2006) 19–32.
- B.S.R.V. Prasad, P.D.N. Srinivasu, P.S. Varma, A.V. Raman,
S. Ray, Dynamics of dissolved oxygen in relation to saturation
and health of an aquatic body: a case for Chilka lagoon,
India, J. Ecosyst., 2014 (2014) 1–17.
- V.S. Kale, Consequence of temperature, pH, turbidity and
dissolved oxygen water quality parameters, Int. Adv. Res. J. Sci.
Eng. Technol., 3 (2016) 186–190.
- A.S. Ren, F. Chai, H. Xue, D.M. Anderson, F.P. Chavez, A sixteen
year decline in dissolved oxygen in the central California
current, Sci. Rep., 8 (2018) 1–9.
- T. Näykki, L. Jalukse, I. Helm, I. Leito, Dissolved oxygen
concentration interlaboratory comparison: what can we learn?,
Water, 5 (2013) 420–442.
- E.S. Salami, M. Salari, S. Nikbakht Sheibani, M. Hosseinikheirabad,
Dataset on the assessments the rate of changing of
dissolved oxygen and temperature of surface water, case study:
California, USA, J. Environ. Treat. Tech., 7 (2020) 843–852.
- S. Famielec, M. Malinowski, B. Brzychczyk, J. Salamon, Present
used methods for measuring dissolved oxygen concentration
at wastewater treatment plants, Infrastruct. Ecol. Rural Area,
2 (2015) 431–440.
- Y. Chen, J. Xu, H. Yu, Z. Zhen, D. Li, Three-dimensional shortterm
prediction model of dissolved oxygen content based on
PSO-BPANN algorithm coupled with Kriging interpolation,
Math. Prob. Eng., 2016 (2016) 1–10.
- V. Ranković, J. Radulović, I. Radojević, A. Ostojić, L. Čomić,
Prediction of dissolved oxygen in reservoirs using adaptive
network-based fuzzy inference system, J. Hydroinf., 14 (2012)
167–179.
- M. Ay, Ö. Kisi, Estimation of dissolved oxygen by using neural
networks and neuro fuzzy computing techniques, J. Civ.
Eng., 21 (2017) 1631–1639.
- X. Li, J. Sha, Z.L. Wang, Chlorophyll-a prediction of lakes with
different water quality patterns in China based on hybrid
neural networks, Water, 524 (2017) 1–13.
- M. Devercelli, E. Peruchet, Trends in chlorophyll-a concentration
in urban water bodies within different man-used basins,
Int. J. Limnol., 44 (2007) 75–84.
- J. Pitarch, G. Volpe, S. Colella, H. Krasemann, R. Santoleri,
Remote sensing of chlorophyll in the Baltic Sea at basin scale
from 1997 to 2012 using merged multi-sensor data, Ocean
Sci., 12 (2016) 379–389.
- S. Jamshidi, N.B. Abu Bakar, A study on distribution of
chlorophyll-a in the coastal waters of Anzali Port, south
Caspian Sea, Ocean Sci. Dis., 8 (2011) 435–451.
- J.B. Palter, M.S. Lozier, R.T. Barber, The effect of advection on
the nutrient reservoir in the North Atlantic subtropical gyre,
Nature, 437 (2005) 687–692.
- C.E. Fergus, A.O. Finley, P.A. Soranno, T. Wagner, Spatial
variation in nutrient and water color effects on lake chlorophyll
at Macroscales, PLoS One, 11 (2016) 1–20.
- G.F. Lee, R.A. Jones, Chlorophyll-a raw water quality
parameter, J. Am. Water Works Assoc., 74 (1982) 490–494.
- A. Wirasatriya, A. Kunarso, L. Maslukah, A. Satriadi,
R.D. Armanto, Different responses of chlorophyll-a concentration
and sea surface temperature (SST) on southeasterly
wind blowing in the Sunda Strait, IOP Conf. Ser.: Earth Environ.
Sci., 139 (2018) 1–7.
- K.T. Chandramohanan, V.V. Radhakrishnan, E.A. Joseph,
K.V. Mohanan, A study on the effect of salinity stress on the
chlorophyll content of certain rice cultivars of Kerala state of
India, Agric. For. Fish., 3 (2014) 67–70.
- Standard Methods for the Examination of Water and
Wastewater, 19th ed., American Public Health Association,
Washington, DC, 1996, p. 541.
- M.B. Menhaj, Fundamental of Neural Network, Vol. 1. Industrial
Amir Kabir University, Tehran, 2008.
- E.G. Farmaki, N.S. Thomaidis, C.E. Efstathiou, Artificial neural
networks in water analysis: theory and applications, Int. J.
Environ. Anal. Chem., 90 (2010) 85–105.
- M.G. Moghaddam, F.B.H. Ahmad, M. Basri, M.B. Abdul
Rahman, Artificial neural network modeling studies to predict
the yield of enzymatic synthesis of betulinic acid ester, Electron.
J. Biotechnol., 13 (2010) 1–12.
- A.A. Adebiyi, A.O. Adewumi, C.K. Ayo, Comparison of
ARIMA and artificial neural networks models for stock price
prediction, J. Appl. Math., 2014 (2014) 1–7.
- A.S. Dawood, H.K. Hussain, A. Hassan, Modeling of river
water quality parameters using artificial neural network –
a case study, Int. J. Adv. Mech. Civ. Eng., 3 (2016) 51–55.
- H. Vicente, C. Couto, J. Machado, A. Abelha, J. Neves, Prediction
of water quality parameters in a reservoir using artificial
neural networks, Int. J. Des. Nat. Ecodyn., 7 (2012) 310–319.
- B. Shrestha, P. Nader-Tehrani, Chapter 6: Using DSM2 to Develop
Operation Strategies for South Delta Improvements Program’s
Proposed Permanent Gates, Submitted for Methodology for
Flow and Salinity Estimates in the Sacramento-San Joaquin
Delta and Suisun Marsh, 27th Annual Progress Report, 2006.
- G.A.C. Cordoba, L. Tuhovčák, M. Tauš, Using artificial neural
network models to assess water quality in water distribution
networks, Proc. Eng., 70 (2014) 399–408.
- J. Wang, P. Shi, P. Jiang, J. Hu, S. Qu, X. Chen, Y. Chen,
Y. Dai, Z. Xiao, Application of BP neural network algorithm
in traditional hydrological model for flood forecasting, Water,
48 (2017) 1–16.
- A. Kiraz, O. Canpolat, E.F. Erkan, Ç. Özer, Artificial neural
networks modeling for the prediction of Pb(II) adsorption,
Int. J. Environ. Sci. Technol., 16 (2019) 5079–5086.
- D.S. Levine, Neural network modeling of emotion, Phys. Life
Rev., 4 (2007) 37–63.
- M.T. Hhagan, H.B. Demuth, M.H. Beale, O. De Jesus, Neural
Network Design. Available at: https://hagan.okstate.edu/
NNDesign.pdf
- P. Liu, J. Wang, A.K. Sangaiah, Y. Xie, X. Yin, Analysis and
prediction of water quality using LSTM deep neural networks
in IOT environment, Sustainability, 11 (2019) 1–19.
- S. Kalantary, A. Jahani, R. Pourbabaki, Z. Beigzadeh, Application
of ANN modeling techniques in the prediction of the diameter
of PCL/gelatin nanofibers in environmental and medical
studies, RSC Adv., 9 (2019) 24858–24874.
- G. Rajiv, A.N. Singh, S. Anupam, Application of ANN for water
quality index, Int. J. Mach. Learn. Comput., 9 (2019) 1–15.
- E.S. Salami, M. Ehetshami, A. Karimi-Jashni, M. Salari,
S. Nikbakht Sheibani, A. Ehteshami, A mathematical method and
artificial neural network modeling to simulate osmosis membrane’s
performance, Model. Earth Syst. Environ., 2 (2016) 1–11.
- M. Salari, E.S. Salami, M. Ehteshami, S. Nikbakht Sheibani,
Artificial neural network (ANN) modeling of cavitation
mechanism by ultrasonic irradiation for cyanobacteria growth
inhibition, J. Environ. Treat. Tech., 8 (2020) 625–633.