References

  1. D. Ariono, Khoiruddin, Subagjo, I.G. Wenten, Heterogeneous structure and its effect on properties and electrochemical behavior of ion exchange membrane, Mater. Res. Express, 4 (2017) 024006.
  2. M. Kumar, M.A. Khan, Z.A. Al-Othman, T.S.Y. Choong, Recent developments in ion-exchange membranes and their applications in electrochemical processes for in situ ion substitutions, separation and water splitting, Sep. Purif. Rev., 42 (2013) 187–261.
  3. E. Stránská, K. Weinertová, D. Neděla, J. Křivčík, N. Václavíková, Preparation and characterization of heterogeneous weak base anion-exchange membranes, Chem. Pap., 73 (2019) 447–454.
  4. P. Singare, R.S. Lokhande, R.S. Madyal, Thermal degradation studies of some strongly acidic cation exchange resins, Open J. Phys. Chem., 1 (2011) 45–54.
  5. L. Zárybnická, E. Stránská, M. Večeřa, E. Černošková, K. Melánová, Monitoring of the functionality of selected cation exchangers in thermal loading, Chem. Listy, 109 (2015) 856–859.
  6. K. Weinertová, J. Křivčík, D. Neděla, E. Stránská, N. Václavíková, Optimization of polyethylene binder for heterogeneous ion exchange membrane manufacture to improve its mechanical stability, J. Appl. Polym. Sci., 135 (2018) 46415.
  7. K. Weinertová, E. Stránská, D. Neděla, J. Křivčík, Optimization of preparation of heterogeneous anion exchange membrane based on polypropylene, Chem. Listy, 112 (2018) 440–445.
  8. R.J. Koopmans, J. Molenaar, The “Sharkskin Effect” in polymer extrusion, Polym. Eng. Sci., 38 (1998) 101–107.
  9. H.K. Nason, A high temperature, high pressure rheometer for plastics, J. Appl. Phys., 16 (1945) 338.
  10. E.C. Achilleos, G. Feorgiou, S.G. Hatzikiriakos, Role of processing aids in the extrusion of molten polymers, J. Vinyl Add. Tech., 8 (2002) 7–24.
  11. O. Kulikov, K. Hornung, M.H. Wagner, In: S. Thomas, Y. Weimin, Advances in Polymer Processing: Macro- to Nano-Scales, Woodhead Publishing Ltd., 80 High Street Cambridge, CB22 3HJ United Kingdom, 2009, pp. 438–479.
  12. P. Bulejko, E. Stránská, Variations in anion-exchange membrane properties with ionic resin moisture, Ionics, 25 (2019) 4251–4263.
  13. P. Długołęcki, P. Ogonowski, S.J. Metz, M. Saakes, K. Nijmeijer, M. Wessling, On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport, J. Membr. Sci., 349 (2010) 369–379.
  14. E. Agel, J. Bouet, J.F. Fauvarque, Characterization and use of anionic membranes for alkaline fuel cells, J. Power Sources, 101 (2001) 267–274.
  15. G.S. Gohil, V.K. Shahi, R.J. Rangarajan, Comparative studies on electrochemical characterization of homogeneous and heterogeneous type of ion-exchange membrane, J. Membr. Sci., 240 (2004) 211–219.
  16. G. Hong, B. Zhang, S. Glabman, N. Uzal, X. Dou, H. Zhang, et al., Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: a review, J. Membr. Sci., 486 (2015) 71–88.
  17. R. Takagi, M. Vaselbehagh, H. Matsuyama, Theoretical study of the permselectivity of an anion exchange membrane in electrodialysis, J. Membr. Sci., 470 (2014) 486–493.
  18. W. Cui, J. Kerres, G. Eigenberger, Development and characterization of ion-exchange polymer blend membranes, Sep. Purif. Technol., 14 (1998) 145–154.
  19. T. Sata, Ion Exchange Membranes: Preparation, Characterization, Modification and Application, The Royal Society of Chemistry, Cambridge, 2004, pp. 136–138.
  20. J. Praus, E. Stránská, The Effect of Process Additives on Production and Properties of Ion-Exchange Membranes, Workshop of Students’ Presentation 2019 “Membranes and Membrane Processes”, Czech Membrane Platform, Straz pod Ralskem, 16th October, 2019.