References
- R. Remus, M. Monsonet, R. Serge, L. Sancho, Best Available
Techniques (BAT) Reference Document for Iron and Steel
Production, Industrial Emissions Directive 2010/75/EU 2013.
- D. Maiti, I. Ansari, M.A. Rather, A. Deepa, Comprehensive
review on wastewater discharged from the coal-related
industries – characteristics and treatment strategies, Water Sci.
Technol., 79 (2019) 2023–2035.
- J. Wang, F.-L. Luo, J.-H. Chen, B. Lu, Study on advanced
treatment of coking wastewater by double-membranes method,
Adv. Mater. Energy Sustainable, (2017) 493–500, https://doi.
org/10.1142/9789813220393_0061.
- R. Kumar, P. Pal, Removal of phenol from coke-oven wastewater
by cross-flow nanofiltration membranes, Water Environ. Res.,
85 (2013) 447–455.
- M. Samimi, M.S. Moghadam, Phenol biodegradation by
bacterial strain O-CH1 isolated from seashore, Global J.
Environ. Sci. Manage., 6 (2020) 109–118.
- W.W. Ma, Y.X. Han, C.Y. Xu, H.J. Han, D. Zhong, H. Zhu,
K. Li, The mechanism of synergistic effect between ironcarbon
microelectrolysis and biodegradation for strengthening
phenols removal in coal gasification wastewater treatment,
Bioresour. Technol., 271 (2019) 84–90.
- A. Noworyta, A. Trusek-Hołownia, S. Mielczarski,
M. Kubasiewicz-Ponitka, An integrated pervaporation–
biodegradation
process of phenolic wastewater treatment,
Desalination, 198 (2006) 191–197.
- J. Wang, X.D. Zhang, B. Zhang, L.Z. Jiang, M.W. Xie, Advanced
treatment of coking wastewater by sequencing batch MBR-RO,
Adv. Mater. Res., 838–841 (2014) 2791–2796.
- G.E. Chen, Y. Zhou, Z.L. Xu, Q. Lu, Cake fouling mechanism
and analysis of synthetic coke wastewater treatment by
membrane bioreactor, Fundam. Chem. Eng., 233–235 (2011)
953–958.
- N. Jha, Z. Kiss, B. Gorczyca, Fouling mechanism in
nanofiltration membranes for the treatment of high DOC and
varying hardness water, Desal. Water Treat., 127 (2018) 197–212.
- M. Zhuo, K. Lv, X.Y. Zhang, Y. Zhang, X.Z. Shi, Y. Lu, Study
of the effect of morphological structure on microfiltration
membrane fouling, Desal. Water Treat., 152 (2019) 1–10.
- S. Mondal, S. De, Generalized criteria for identification of
fouling mechanism under steady state membrane filtration,
J. Membr. Sci., 344 (2009) 6–13.
- Z.W. He, D.J. Miller, S. Kasemset, D.R. Paul, B.D.Freeman,
The effect of permeate flux on membrane fouling during
microfiltration of oily water, J. Membr. Sci., 525 (2017) 25–34.
- W. Gao, H. Liang, J. Ma, M. Han, Z.-L. Chen, Z.-S. Han,
G.-B. Li, Membrane fouling control in ultrafiltration technology
for drinking water production: a review, Desalination,
272 (2011) 1–8.
- M. Lech, A. Trusek, Biofouling phenomena on the ceramic
microfiltration membranes an experimental research, Desal.
Water Treat., 128 (2018) 236–242.
- S. Ebrahim, Cleaning and regeneration of membranes in
desalination and wastewater applications: state-of-the-art,
Desalination, 96 (1994) 225–238.
- T. Zsirai, P. Buzatu, P. Aerts, S. Judd, Efficacy of relaxation,
backflushing, chemical cleaning and clogging removal for
an immersed hollow fibre membrane bioreactor, Water Res.,
46 (2012) 4499–4507.
- P.C. Bandara, E.T. Nadres, J. Peña-Bahamonde, D.F. Rodrigues,
Impact of water chemistry, shelf-life, and regeneration in the
removal of different chemical and biological contaminants in
water by a model polymeric graphene oxide nanocomposite
membrane coating, J. Water Process Eng., 32 (2019) 100967,
https://doi.org/10.1016/j.jwpe.2019.100967.
- J. Cakl, I. Bauer, P. Doleček, P. Mikulášek, Effects of backflushing
conditions on permeate flux in membrane crossflow
microfiltration of oil emulsion, Desalination, 127 (2000) 189–198.
- A. Salladini, M. Prisciandaro, D. Barba, Ultrafiltration of
biologically treated wastewater by using backflushing, Desalination,
207 (2007) 24–34.
- P. Srijaroonrat, E. Julien, Y. Aurelle, Unstable secondary oil/
water emulsion treatment using ultrafiltration: fouling control
by backflushing, J. Membr. Sci., 159 (1999) 11–20.
- H.-G. Kim, C. Park, J.M. Yang, B. Lee, S.-S. Kim, S.Y. Kim,
Optimization of backflushing conditions for ceramic ultrafiltration
membrane of disperse dye solutions, Desalination,
202 (2007) 150–155.
- C. Atallah, S. Mortazavi, A.Y. Tremblay, A. Doiron, Surfacemodified
multi-lumen tubular membranes for SAGD-produced
water treatment, Energy Fuels, 33 (2019) 5766–5776.
- A. Nabe, E. Staude, G. Belfort, Surface modification of
polysulfone ultrafiltration membranes and fouling by BSA
solutions, J. Membr. Sci., 133 (1997) 57–72.
- M.C. Porter, Handbook of Industrial Membrane Technology,
Noyes Publications, USA, 1990.
- F. Al-Bakeri, H. El Hares, Experimental optimization of
sponge ball cleaning system operation in Umm AI Nar MSF
desalination plants, Desalination, 94 (1993) 133–150.
- C. Yanagi, K. Mori, Advanced reverse osmosis process with
automatic sponge ball cleaning for the reclamation of municipal
sewage, Desalination, 32 (1980) 391–398.
- C. Psoch, S. Schiewer, Direct filtration of natural and simulated
river water with air sparging and sponge ball application
for fouling control, Desalination, 197 (2006) 190–204.
- B.B. Gupta, P. Blanpain, M.Y. Jaffrin, Permeate flux enhancement
by pressure and flow pulsations in microfiltration with mineral
membranes, J. Membr. Sci., 70 (1992) 257–266.
- A. Noworyta, T. Koziol, A. Trusek-Holownia, A system for
cleaning condensates containing ammonium nitrate by the
reverse osmosis method, Desalination, 156 (2003) 397–402.
- I. Petrinic, J. Korenak, D. Povodnik, C. Hélix-Nielsen, A
feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing
industry, J. Cleaner Prod., 101 (2015) 292–300.
- X. Zou, J. Li, On the fouling mechanism of polysulfone
ultrafiltration membrane in the treatment of coal gasification
wastewater, Front. Chem. Sci. Eng., 10 (2016) 490–498.
- A. Kwiecińska, M. Kochel, K. Rychlewska, J. Figa, The use
of ultrafiltration in enhancement of chemical coke oven
wastewater treatment, Desal. Water Treat., 128 (2018) 214–221.
- M. Kolb, M. Bahadir, B. Teichgräber, Determination of chemical
oxygen demand (COD) using an alternative wet chemical
method free of mercury and dichromate, Water Res., 122 (2017)
645–654.
- C.E. Bright, S.M. Mager, S.L. Horton, Predicting suspended
sediment concentration from nephelometric turbidity in
organic-rich waters, River Res. Appl., 34 (2018) 640–648.
- S. Acarbabacanm, I. Vergili, Y. Kaya, G. Demir, H. Barlas,
Removal of color from textile wastewater containing azodyes
by Fenton’s reagent, Fresenius Environ. Bull., 11 (2002) 840–843.
- http://www1.lasalle.edu/~prushan/Intrumental%20Analysis_
files/AA-Perkin%20Elmer%20guide%20to%20all!.pdf