References
- X. Zheng, Z. Zhang, D. Yu, X. Chen, R. Cheng, S. Min,
J. Wang, Q. Xiao, J. Wang, Overview of membrane technology
applications for industrial wastewater treatment in China to
increase water supply, Resour. Conserv. Recycl., 105 (2015) 1–10.
- A.K. Pabby, S.S.H. Rizvi, A.M.S. Requena, Membrane
Separations - Chemical, Pharmaceutical, Food, and Biotechnological
Applications, 2nd ed., CRC Press, New York, NY,
2015.
- N.L. Le, S.P. Nunes, Materials and membrane technologies for
water and energy sustainability, Sustainable Mater. Technol.,
7 (2016) 1–28.
- C. Xu, V.S. Thiruvadi, R. Whitmore, H. Liu, Delivery systems
for biomedical applications: basic introduction, research
frontiers and clinical translations, Biomater. Transl. Med.,
5 (2019) 93–116.
- M. Takht Ravanchi, T. Kaghazchi, A. Kargari, Application of
membrane separation processes in petrochemical industry:
a review, Desalination, 235 (2009) 199–244.
- H. Lin, W. Gao, F. Meng, B.-Q. Liao, K.-T. Leung, L. Zhao,
J. Chen, H. Hong, Membrane bioreactors for industrial
wastewater treatment: a critical review, Crit. Rev. Environ. Sci.
Technol., 42 (2012) 677–740.
- A. Ciechanowska, D. Schwanzer-Pfeiffer, E. Rossmanith,
S. Sabalinska, C. Wojciechowski, J. Hartmann, K. Hellevuo,
A. Chwojnowski, P. Foltynski, D. Falkenhagen, J.M. Wojcicki,
Artificial vessel as a basis for disease related cell culture model,
Int. J. Artif. Organs, 29 (2006) 1–4.
- M. Farina, J.F. Alexander, U. Thekkedath, M. Ferrari, A. Grattoni,
Cell encapsulation: overcoming barriers in cell transplantation
in diabetes and beyond, Adv. Drug Deliv. Rev., 139 (2019)
92–115.
- Y. Liu, J. Luo, X. Chen, W. Liu, T. Chen, Cell Membrane Coating
Technology: A Promising Strategy for Biomedical Applications,
Nano Microlett., 11 (2019) 1–46, doi: 10.1007/s40820-019-0330-9.
- G. Orive, D. Emerich, A. Khademhosseini, S. Matsumoto,
R.M. Hernández, J.L. Pedraz, T. Desai, R. Calafiore, P. de Vos,
Engineering a clinically translatable bioartificial pancreas to
treat type I diabetes, Trends Biotechnol., 36 (2018) 445–456.
- K.M. Park, Y.M. Shin, K. Kim, H. Shin, Tissue Engineering and
Regenerative Medicine 2017: A Year in Review, Tissue Eng. Part
B, 24 (2018) 327–344.
- F. Berthiaume, T.J. Maguire, M.L. Yarmush, Tissue engineering
and regenerative medicine: history, progress, and challenges,
Annu. Rev. Chem. Biomol. Eng., 2 (2011) 403–430.
- A.A. Chaudhari, K. Vig, D.R. Baganizi, R. Sahu, S. Dixit,
V. Dennis, S.R. Singh, S.R. Pillai, Future prospects for scaffolding
methods and biomaterials in skin tissue engineering: a review,
Int. J. Mol. Sci., 17 (2016) 1–31, doi: 10.3390/ijms17121974.
- I. Bružauskaitė, D. Bironaitė, E. Bagdonas, E. Bernotienė,
Scaffolds and cells for tissue regeneration: different scaffold
pore sizes—different cell effects, Cytotechnology, 68 (2016)
355–369.
- M.P. Nikolova, M.S. Chavali, Recent advances in biomaterials
for 3D scaffolds: a review, Bioact. Mater., 4 (2019) 271–292.
- S.J. Hollister, Porous scaffold design for tissue engineering,
Nat. Mater., 4 (2005) 518–524.
- F. Ahmadi, R. Giti, S. Mohammadi-Samani, F. Mohammadi,
Biodegradable scaffolds for cartilage tissue engineering,
Galen Med. J., 6 (2017) 70–80.
- Q.L. Loh, C. Choong, Three-dimensional scaffolds for tissue
engineering applications: role of porosity and pore size,
Tissue Eng. Part B, 19 (2013) 485–502.
- F.J. O’Brien, Biomaterials and scaffolds for tissue engineering,
Mater. Today, 14 (2011) 88–95.
- X. Liang, Y. Qi, Z. Pan, Y. He, X. Liu, S. Cui, J. Ding, Design and
preparation of quasi-spherical salt particles as water-soluble
porogens to fabricate hydrophobic porous scaffolds for tissue
engineering and tissue regeneration, Mater. Chem. Front.,
2 (2018) 1539–1553.
- W. Zhao, Y. Su, C. Li, Q. Shi, X. Ning, Z. Jiang, Fabrication of
antifouling polyethersulfone ultrafiltration membranes using
Pluronic F127 as both surface modifier and pore-forming agent,
J. Membr. Sci., 318 (2008) 405–412.
- B. Chakrabarty, A.K. Ghoshal, M.K. Purkait, Preparation,
characterization and performance studies of polysulfone
membranes using PVP as an additive, J. Membr. Sci., 315 (2008)
36–47.
- A.V. Bildyukevich, T.V. Plisko, A.S. Liubimova, V.V. Volkov,
V.V. Usosky, Hydrophilization of polysulfone hollow fiber
membranes via addition of polyvinylpyrrolidone to the bore
fluid, J. Membr. Sci., 524 (2016) 537–549.
- G. Arthanareeswaran, D. Mohan, M. Raajenthiren, Preparation,
characterization and performance studies of ultrafiltration
membranes with polymeric additive, J. Membr. Sci., 350 (2010)
130–138.
- K. Dudziński, A. Chwojnowski, M. Gutowska, M. Płończak,
J. Czubak, E. Łukowska, C. Wojciechowski, Three dimensional
polyethersulphone scaffold for chondrocytes cultivation - the
future supportive material for articular cartilage regeneration,
Biocybern. Biomed. Eng., 30 (2010) 65–76.
- A. Chwojnowski, A. Kruk, C. Wojciechowski, E. Łukowska,
J. Dulnik, P. Sajkiewicz, The dependence of the membrane
structure on the non-woven forming the macropores in the
3D scaffolds preparation, Desal. Water Treat., 64 (2017) 324–331.
- G. Conoscenti, T. Schneider, K. Stölzel, F. Carfì Pavia, V. Brucato,
C. Goegele, V. Carrubba, G. Schulze-Tanzil, PLLA scaffolds
produced by thermally induced phase separation (TIPS) allow
human chondrocyte growth and extracellular matrix formation
dependent on pore size, Mater. Sci. Eng., C, 80 (2017) 449–459.
- M.J. Gupte, W.B. Swanson, J. Hu, X. Jin, H. Ma, Z. Zhang,
Z. Liu, K. Feng, G. Feng, G. Xiao, N. Hatch, Y. Mishina,
P.X. Ma, Pore size directs bone marrow stromal cell fate and
tissue regeneration in nanofibrous macroporous scaffolds
by mediating vascularization, Acta Biomater., 82 (2018) 1–11.
- P.L. Lewis, R.M. Green, R.N. Shah, 3D-printed gelatin scaffolds
of differing pore geometry modulate hepatocyte function and
gene expression, Acta Biomater., 69 (2018) 63–70.
- G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han,
B. Li, W. Shu, 3D bioactive composite scaffolds for bone tissue
engineering, Bioact. Mater., 3 (2018) 278–314.
- P. Denis, J. Dulnik, P. Sajkiewicz, Electrospinning and structure
of bicomponent polycaprolactone/gelatin nanofibers obtained
using alternative solvent system, Int. J. Polym. Mater. Polym.
Biomater., 64 (2015) 354–364.
- R. Sakai, B. John, M. Okamoto, J.V. Seppälä, J. Vaithilingam,
H. Hussein, R. Goodridge, Macromol. Mater. Eng. 1/2013, Macromol.
Mater. Eng., 298 (2013) 45–52, doi: 10.1002/mame.201370001.
- R. Song, M. Murphy, C. Li, K. Ting, C. Soo, Z. Zheng, Current
development of biodegradable polymeric materials for biomedical
applications, Drug Des. Dev. Ther., 12 (2018) 3117–3145.
- L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials,
Prog. Polym. Sci., 32 (2007) 762–798.
- F. Asghari, M. Samiei, K. Adibkia, A. Akbarzadeh, S. Davaran,
Biodegradable and biocompatible polymers for tissue
engineering application: a review, Artif. Cells Nanomed.
Biotechnol., 45 (2017) 185–192.
- T. Urbánek, E. Jäger, A. Jäger, M. Hrubý, Selectively biodegradable
polyesters: nature-inspired construction materials
for future biomedical applications, Polymers, 11 (2019) 1–21,
doi: 10.3390/polym11061061.
- D. Daranarong, P. Techaikool, W. Intatue, R. Daengngern,
K. Thomson, R. Molley, N. Kungwan, L. Foster, D. Boonyawan,
W. Punyodom, Effect of surface modification of poly(L-lactideco-
ε-caprolactone) membranes by low-pressure plasma on
support cell biocompatibility, Surf. Coat. Technol., 306 (2016)
328–335.
- T. Li, L. Tian, S. Liao, X. Ding, S.A. Irvine, S. Ramakrishna,
Fabrication, mechanical property and in vitro evaluation of
poly(L-lactic acid-co-ε-caprolactone) core-shell nanofiber
scaffold for tissue engineering, J. Mech. Behav. Biomed. Mater.,
98 (2019) 48–57.
- W. Sikorska, C. Wojciechowski, M. Przytulska, G. Rokicki,
M. Wasyłeczko, J.L. Kulikowski, A. Chwojnowski, Polysulfone–
polyurethane (PSf-PUR) blend partly degradable hollow fiber
membranes: preparation, characterization, and computer
image analysis, Desal. Water Treat., 128 (2018) 383–391.
- M. Przytulska, J.L. Kulikowski, M. Wasyłeczko, A. Chwojnowski,
D. Piętka, The evaluation of 3D morphological structure of
porous membranes based on a computer-aided analysis of
their 2D images, Desal. Water Treat., 128 (2018) 11–19.
- M. Przytulska, A. Kruk, J.L. Kulikowski, C. Wojciechowski,
A. Gadomska-Gajadhur, A. Chwojnowski, Comparative assessment
of polyvinylpyrrolidone type of membranes based on
porosity analysis, Desal. Water Treat., 75 (2017) 18–25.
- W. Chrzanowski, E. Ali, A. Neel, D. Andrew, J. Campbell, Effect
of surface treatment on the bioactivity of nickel – titanium, Acta
Biomater., 4 (2008) 1969–1984.
- M. Ara, M. Watanabe, Y. Imai, Effect of blending calcium
compounds on hydrolytic degradation of poly(DL-lactic
acid-co-glycolic acid), Biomaterials, 23 (2002) 2479–2483.
- S.T. Ho, D.W. Hutmacher, A comparison of micro CT with
other techniques used in the characterization of scaffolds,
Biomaterials, 27 (2006) 1362–1376.
- J. Gonzalez, R.Q. Hou, E.P.S. Nidadavolu, R. Willumeit-Römer,
F. Feyerabend, Magnesium degradation under physiological
conditions – best practice, Bioact. Mater., 3 (2018) 174–185.
- Y. Zhao, D. Liu, W. Huang, Y. Yang, M. Ji, L.D. Nghiem,
Q.T. Trinh, N.H. Tran, Insights into biofilm carriers for
biological wastewater treatment processes: current state-ofthe-
art, challenges, and opportunities, Bioresour. Technol.,
288 (2019) 1–14.
- Z.B. Bouabidi, M.H. El-Naas, Z. Zhang, Immobilization of
microbial cells for the biotreatment of wastewater: a review,
Environ. Chem. Lett., 17 (2019) 241–257.
- D. Lu, H. Bai, F. Kong, S.N. Liss, B. Liao, Recent advances in
membrane aerated biofilm reactors, Crit. Rev. Environ. Sci.
Technol., 50 (2020) 1–55, doi: 10.1080/10643389.2020.1734432.