References

  1. X. Zheng, Z. Zhang, D. Yu, X. Chen, R. Cheng, S. Min, J. Wang, Q. Xiao, J. Wang, Overview of membrane technology applications for industrial wastewater treatment in China to increase water supply, Resour. Conserv. Recycl., 105 (2015) 1–10.
  2. A.K. Pabby, S.S.H. Rizvi, A.M.S. Requena, Membrane Separations - Chemical, Pharmaceutical, Food, and Biotechnological Applications, 2nd ed., CRC Press, New York, NY, 2015.
  3. N.L. Le, S.P. Nunes, Materials and membrane technologies for water and energy sustainability, Sustainable Mater. Technol., 7 (2016) 1–28.
  4. C. Xu, V.S. Thiruvadi, R. Whitmore, H. Liu, Delivery systems for biomedical applications: basic introduction, research frontiers and clinical translations, Biomater. Transl. Med., 5 (2019) 93–116.
  5. M. Takht Ravanchi, T. Kaghazchi, A. Kargari, Application of membrane separation processes in petrochemical industry: a review, Desalination, 235 (2009) 199–244.
  6. H. Lin, W. Gao, F. Meng, B.-Q. Liao, K.-T. Leung, L. Zhao, J. Chen, H. Hong, Membrane bioreactors for industrial wastewater treatment: a critical review, Crit. Rev. Environ. Sci. Technol., 42 (2012) 677–740.
  7. A. Ciechanowska, D. Schwanzer-Pfeiffer, E. Rossmanith, S. Sabalinska, C. Wojciechowski, J. Hartmann, K. Hellevuo, A. Chwojnowski, P. Foltynski, D. Falkenhagen, J.M. Wojcicki, Artificial vessel as a basis for disease related cell culture model, Int. J. Artif. Organs, 29 (2006) 1–4.
  8. M. Farina, J.F. Alexander, U. Thekkedath, M. Ferrari, A. Grattoni, Cell encapsulation: overcoming barriers in cell transplantation in diabetes and beyond, Adv. Drug Deliv. Rev., 139 (2019) 92–115.
  9. Y. Liu, J. Luo, X. Chen, W. Liu, T. Chen, Cell Membrane Coating Technology: A Promising Strategy for Biomedical Applications, Nano Microlett., 11 (2019) 1–46, doi: 10.1007/s40820-019-0330-9.
  10. G. Orive, D. Emerich, A. Khademhosseini, S. Matsumoto, R.M. Hernández, J.L. Pedraz, T. Desai, R. Calafiore, P. de Vos, Engineering a clinically translatable bioartificial pancreas to treat type I diabetes, Trends Biotechnol., 36 (2018) 445–456.
  11. K.M. Park, Y.M. Shin, K. Kim, H. Shin, Tissue Engineering and Regenerative Medicine 2017: A Year in Review, Tissue Eng. Part B, 24 (2018) 327–344.
  12. F. Berthiaume, T.J. Maguire, M.L. Yarmush, Tissue engineering and regenerative medicine: history, progress, and challenges, Annu. Rev. Chem. Biomol. Eng., 2 (2011) 403–430.
  13. A.A. Chaudhari, K. Vig, D.R. Baganizi, R. Sahu, S. Dixit, V. Dennis, S.R. Singh, S.R. Pillai, Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review, Int. J. Mol. Sci., 17 (2016) 1–31, doi: 10.3390/ijms17121974.
  14. I. Bružauskaitė, D. Bironaitė, E. Bagdonas, E. Bernotienė, Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects, Cytotechnology, 68 (2016) 355–369.
  15. M.P. Nikolova, M.S. Chavali, Recent advances in biomaterials for 3D scaffolds: a review, Bioact. Mater., 4 (2019) 271–292.
  16. S.J. Hollister, Porous scaffold design for tissue engineering, Nat. Mater., 4 (2005) 518–524.
  17. F. Ahmadi, R. Giti, S. Mohammadi-Samani, F. Mohammadi, Biodegradable scaffolds for cartilage tissue engineering, Galen Med. J., 6 (2017) 70–80.
  18. Q.L. Loh, C. Choong, Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size, Tissue Eng. Part B, 19 (2013) 485–502.
  19. F.J. O’Brien, Biomaterials and scaffolds for tissue engineering, Mater. Today, 14 (2011) 88–95.
  20. X. Liang, Y. Qi, Z. Pan, Y. He, X. Liu, S. Cui, J. Ding, Design and preparation of quasi-spherical salt particles as water-soluble porogens to fabricate hydrophobic porous scaffolds for tissue engineering and tissue regeneration, Mater. Chem. Front., 2 (2018) 1539–1553.
  21. W. Zhao, Y. Su, C. Li, Q. Shi, X. Ning, Z. Jiang, Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent, J. Membr. Sci., 318 (2008) 405–412.
  22. B. Chakrabarty, A.K. Ghoshal, M.K. Purkait, Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive, J. Membr. Sci., 315 (2008) 36–47.
  23. A.V. Bildyukevich, T.V. Plisko, A.S. Liubimova, V.V. Volkov, V.V. Usosky, Hydrophilization of polysulfone hollow fiber membranes via addition of polyvinylpyrrolidone to the bore fluid, J. Membr. Sci., 524 (2016) 537–549.
  24. G. Arthanareeswaran, D. Mohan, M. Raajenthiren, Preparation, characterization and performance studies of ultrafiltration membranes with polymeric additive, J. Membr. Sci., 350 (2010) 130–138.
  25. K. Dudziński, A. Chwojnowski, M. Gutowska, M. Płończak, J. Czubak, E. Łukowska, C. Wojciechowski, Three dimensional polyethersulphone scaffold for chondrocytes cultivation - the future supportive material for articular cartilage regeneration, Biocybern. Biomed. Eng., 30 (2010) 65–76.
  26. A. Chwojnowski, A. Kruk, C. Wojciechowski, E. Łukowska, J. Dulnik, P. Sajkiewicz, The dependence of the membrane structure on the non-woven forming the macropores in the 3D scaffolds preparation, Desal. Water Treat., 64 (2017) 324–331.
  27. G. Conoscenti, T. Schneider, K. Stölzel, F. Carfì Pavia, V. Brucato, C. Goegele, V. Carrubba, G. Schulze-Tanzil, PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size, Mater. Sci. Eng., C, 80 (2017) 449–459.
  28. M.J. Gupte, W.B. Swanson, J. Hu, X. Jin, H. Ma, Z. Zhang, Z. Liu, K. Feng, G. Feng, G. Xiao, N. Hatch, Y. Mishina, P.X. Ma, Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization, Acta Biomater., 82 (2018) 1–11.
  29. P.L. Lewis, R.M. Green, R.N. Shah, 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression, Acta Biomater., 69 (2018) 63–70.
  30. G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han, B. Li, W. Shu, 3D bioactive composite scaffolds for bone tissue engineering, Bioact. Mater., 3 (2018) 278–314.
  31. P. Denis, J. Dulnik, P. Sajkiewicz, Electrospinning and structure of bicomponent polycaprolactone/gelatin nanofibers obtained using alternative solvent system, Int. J. Polym. Mater. Polym. Biomater., 64 (2015) 354–364.
  32. R. Sakai, B. John, M. Okamoto, J.V. Seppälä, J. Vaithilingam, H. Hussein, R. Goodridge, Macromol. Mater. Eng. 1/2013, Macromol. Mater. Eng., 298 (2013) 45–52, doi: 10.1002/mame.201370001.
  33. R. Song, M. Murphy, C. Li, K. Ting, C. Soo, Z. Zheng, Current development of biodegradable polymeric materials for biomedical applications, Drug Des. Dev. Ther., 12 (2018) 3117–3145.
  34. L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci., 32 (2007) 762–798.
  35. F. Asghari, M. Samiei, K. Adibkia, A. Akbarzadeh, S. Davaran, Biodegradable and biocompatible polymers for tissue engineering application: a review, Artif. Cells Nanomed. Biotechnol., 45 (2017) 185–192.
  36. T. Urbánek, E. Jäger, A. Jäger, M. Hrubý, Selectively biodegradable polyesters: nature-inspired construction materials for future biomedical applications, Polymers, 11 (2019) 1–21, doi: 10.3390/polym11061061.
  37. D. Daranarong, P. Techaikool, W. Intatue, R. Daengngern, K. Thomson, R. Molley, N. Kungwan, L. Foster, D. Boonyawan, W. Punyodom, Effect of surface modification of poly(L-lactideco- ε-caprolactone) membranes by low-pressure plasma on support cell biocompatibility, Surf. Coat. Technol., 306 (2016) 328–335.
  38. T. Li, L. Tian, S. Liao, X. Ding, S.A. Irvine, S. Ramakrishna, Fabrication, mechanical property and in vitro evaluation of poly(L-lactic acid-co-ε-caprolactone) core-shell nanofiber scaffold for tissue engineering, J. Mech. Behav. Biomed. Mater., 98 (2019) 48–57.
  39. W. Sikorska, C. Wojciechowski, M. Przytulska, G. Rokicki, M. Wasyłeczko, J.L. Kulikowski, A. Chwojnowski, Polysulfone– polyurethane (PSf-PUR) blend partly degradable hollow fiber membranes: preparation, characterization, and computer image analysis, Desal. Water Treat., 128 (2018) 383–391.
  40. M. Przytulska, J.L. Kulikowski, M. Wasyłeczko, A. Chwojnowski, D. Piętka, The evaluation of 3D morphological structure of porous membranes based on a computer-aided analysis of their 2D images, Desal. Water Treat., 128 (2018) 11–19.
  41. M. Przytulska, A. Kruk, J.L. Kulikowski, C. Wojciechowski, A. Gadomska-Gajadhur, A. Chwojnowski, Comparative assessment of polyvinylpyrrolidone type of membranes based on porosity analysis, Desal. Water Treat., 75 (2017) 18–25.
  42. W. Chrzanowski, E. Ali, A. Neel, D. Andrew, J. Campbell, Effect of surface treatment on the bioactivity of nickel – titanium, Acta Biomater., 4 (2008) 1969–1984.
  43. M. Ara, M. Watanabe, Y. Imai, Effect of blending calcium compounds on hydrolytic degradation of poly(DL-lactic acid-co-glycolic acid), Biomaterials, 23 (2002) 2479–2483.
  44. S.T. Ho, D.W. Hutmacher, A comparison of micro CT with other techniques used in the characterization of scaffolds, Biomaterials, 27 (2006) 1362–1376.
  45. J. Gonzalez, R.Q. Hou, E.P.S. Nidadavolu, R. Willumeit-Römer, F. Feyerabend, Magnesium degradation under physiological conditions – best practice, Bioact. Mater., 3 (2018) 174–185.
  46. Y. Zhao, D. Liu, W. Huang, Y. Yang, M. Ji, L.D. Nghiem, Q.T. Trinh, N.H. Tran, Insights into biofilm carriers for biological wastewater treatment processes: current state-ofthe- art, challenges, and opportunities, Bioresour. Technol., 288 (2019) 1–14.
  47. Z.B. Bouabidi, M.H. El-Naas, Z. Zhang, Immobilization of microbial cells for the biotreatment of wastewater: a review, Environ. Chem. Lett., 17 (2019) 241–257.
  48. D. Lu, H. Bai, F. Kong, S.N. Liss, B. Liao, Recent advances in membrane aerated biofilm reactors, Crit. Rev. Environ. Sci. Technol., 50 (2020) 1–55, doi: 10.1080/10643389.2020.1734432.