References
- X.-H. Chen, Z.-X. Zeng, W.-L. Xue, T. Pu, Solubility of
2,6-diaminopyridine in toluene, o-xylene, ethylbenzene,
methanol, ethanol, 2-propanol, and sodium hydroxide solutions,
J. Chem. Eng. Data, 52 (2007) 1911–1915.
- R. Norris Shreve, M.W. Swaney, E.H. Riechers, Studies in
azo dyes. I. Preparation and bacteriostatic properties of azo
derivatives of 2,6-diaminopyridine, J. Am. Chem. Soc., 65 (1943)
2241–2243.
- A.A. Shoukry, S.R. Al-Mhayawi, Synthesis, characterization,
biological activity and equilibrium studies of cadmium(II) with
2,6-diaminopyridine and various bio-relevant ligands, Eur. J.
Chem., 4 (2013) 260–267.
- A.A. Shoukry, S.R. Al-Mhayawi, Solution equilibria of binary
and ternary complexes involving zinc(II) with 2,6-diaminopyridine
and various biologically relevant ligands, J. Solution
Chem., 44 (2015) 2073–2089.
- R.M. Alghanmi, M.M. Habeeb, Spectral and solvation effect
studies on charge transfer complex of 2,6-diaminopyridine
with chloranilic acid, J. Mol. Liq., 181 (2013) 20–28.
- D.P. Singh, V. Malik, K. Kumar, C. Sharma, K.R. Aneja,
Macrocyclic metal complexes derived from 2,6-diaminopyridine
and isatin with their antibacterial and spectroscopic studies,
Spectrochim. Acta, Part A, 76 (2010) 45–49.
- E.V. Pakhmutova, A.E. Malkov, T.B. Mikhailova, A.A. Sidorov,
I.G. Fomina, G.G. Aleksandrov, V.M. Novotortsev, V.N. Ikorskii,
I.L. Eremenko, Formation of bi- and tetranuclear cobalt(II)
trimethylacetate complexes with 2-amino-5-methylpyridine and
2,6-diaminopyridine, Russ. Chem. Bull., 52 (2003) 2117–2124.
- K.J. Asali, M. El-Khateeb, L. Almazahreh, Kinetics and mechanism
of ligand substitution reactions of (2,6-diaminopyridine)
[M(CO)2] (M = Cr, Mo, W), Transition Met. Chem., 40 (2015)
471–475.
- V.B. Rana, P. Singh, D.P. Singh, M.P. Teotia, Trivalent chromium,
manganese, iron and cobalt chelates of a tetradentate N6
macrocyclie ligand, Transition Met. Chem., 7 (1982) 174–177.
- S. Ilhan, H. Temel, Synthesis and characterization of a new
macrocyclic Schiff base derived from 2,6-diaminopyridine
and 1,10-bis(2-formylphenyl)-1,4,7,10-tetraoxadecane and its
Cu(II), Ni(II), Pb(II), Co(III) and La(III) complexes, Transition
Met. Chem., 32 (2007) 1039–1046.
- S. Ilhan, H. Temel, M. Sunkur, I. Teğin, Synthesis, structural
characterization of new macrocyclic Schiff base derived from
1,6-bis(2-formylphenyl)hexane and 2,6-diaminopyridine and
its metal complexes, IJC-A, 47 (2008) 560–564.
- F. Böhme, Ch. Kunert, H. Komber, D. Voigt, P. Friedel,
M. Khodja, H. Wilde, Polymeric and macrocyclic ureas based
on meta-substituted aromatic diamines, Macromolecules,
35 (2002) 4233–4237.
- Y.H. Zhai, Q. He, Q. Han, S. Duan, Solid-phase extraction of
trace metal ions with magnetic nanoparticles modified with
2,6-diaminopyridine, Microchim. Acta, 178 (2012) 405–412.
- P. Cyganowski, D. Jermakowicz-Bartkowiak, P. Wilkowski,
Odzyskiwanie metali szlachetnych na jonitach polimerowych,
Chemik, 67 (2013) 317–324.
- https://www.chemicalbook.com/ProductMSDSDetailCB02
36195_EN.htm
- K. Witt, E. Radzyminska-Lenarcik, A. Kosciuszko, M. Gierszewska,
K. Ziuziakowski, The influence of the morphology
and mechanical properties of polymer inclusion membranes
(PIMs) on zinc ion separation from aqueous solutions, Polymers,
10 (2018) 134–147.
- S. Lis, B. Marciniak, M. Elbanowski, On the role of the ground
state Tb(III)/acetylacetone complex in sensitized emission of
Tb(III) in ethanol solution, Monatsh. Chem., 120 (1989) 821–826.
- Z. Ren, L. Meng, Y. Dai, Extraction equilibria of copper(II) with
D2EHPA in kerosene from aqueous solutions in acetate buffer
media, J. Chem. Eng. Data, 52 (2007) 438–441.
- A.N. Banza, E. Gock, K. Kongolo, Base metals recovery
from copper smelter slag by oxidising leaching and solvent
extraction, Hydrometallurgy, 67 (2020) 63–69.
- E. Radzymińska-Lenarcik, K. Witt, Solvent extraction of copper
ions by 3-substituted derivatives of β-diketones, Sep. Sci.
Technol., 53 (2017) 1223–1229.
- B. Pośpiech, W. Walkowiak, Separation of copper(II), cobalt(II)
and nickel(II) from chloride solutions by polymer inclusion
membranes, Sep. Purif. Technol., 57 (2007) 461–465.
- A.L. Salgado, A.M.O. Veloso, D.D. Pereira, G.S. Gontijo,
A. Salum, M.B. Mansur, Recovery of zinc and manganese
from spent alkaline batteries by liquid–liquid extraction with
Cyanex 272, J. Power Sources, 115 (2003) 367–373.
- M. Regel-Rosocka, M. Wiśniewski, Selective removal of zinc(II)
from spent pickling solutions in the presence of iron ions with
phosphonium ionic liquid Cyphos IL 101, Hydrometallurgy,
110 (2011) 85–90.
- M. Daryabor, A. Ahmadi, H. Zilouei, Solvent extraction of
cadmium and zinc from sulphate solutions: comparison of
mechanical agitation and ultrasonic irradiation, Ultrason.
Sonochem., 34 (2017) 931–937.
- M. Ulewicz, E. Radzymińska-Lenarcik, Application of supported
and polymer membrane with 1 decyl-2-methylimidazole for
separation of transition metal ions, Physicochem. Probl. Miner.
Process., 48 (20012) 91–102.
- F. Sellami, O. Kebiche-Senhadji, S. Marais, N. Couvrat,
K. Fatyeyeva, Polymer inclusion membranes based on CTA/PBAT blend containing Aliquat 336 as extractant for removal
of Cr(VI): efficiency, stability and selectivity, React. Funct.
Polym., 139 (2019) 120–132.
- M. Baczyńska, M. Waszak, M. Nowicki, D. Prządka, S. Borysiak,
M. Regel-Rosocka, Characterization of polymer inclusion
membranes (PIMs) containing phosphonium ionic liquids
as Zn(II) carriers, Ind. Eng. Chem. Res., 57 (2018) 5070–5082.