References

  1. X.-H. Chen, Z.-X. Zeng, W.-L. Xue, T. Pu, Solubility of 2,6-diaminopyridine in toluene, o-xylene, ethylbenzene, methanol, ethanol, 2-propanol, and sodium hydroxide solutions, J. Chem. Eng. Data, 52 (2007) 1911–1915.
  2. R. Norris Shreve, M.W. Swaney, E.H. Riechers, Studies in azo dyes. I. Preparation and bacteriostatic properties of azo derivatives of 2,6-diaminopyridine, J. Am. Chem. Soc., 65 (1943) 2241–2243.
  3. A.A. Shoukry, S.R. Al-Mhayawi, Synthesis, characterization, biological activity and equilibrium studies of cadmium(II) with 2,6-diaminopyridine and various bio-relevant ligands, Eur. J. Chem., 4 (2013) 260–267.
  4. A.A. Shoukry, S.R. Al-Mhayawi, Solution equilibria of binary and ternary complexes involving zinc(II) with 2,6-diaminopyridine and various biologically relevant ligands, J. Solution Chem., 44 (2015) 2073–2089.
  5. R.M. Alghanmi, M.M. Habeeb, Spectral and solvation effect studies on charge transfer complex of 2,6-diaminopyridine with chloranilic acid, J. Mol. Liq., 181 (2013) 20–28.
  6. D.P. Singh, V. Malik, K. Kumar, C. Sharma, K.R. Aneja, Macrocyclic metal complexes derived from 2,6-diaminopyridine and isatin with their antibacterial and spectroscopic studies, Spectrochim. Acta, Part A, 76 (2010) 45–49.
  7. E.V. Pakhmutova, A.E. Malkov, T.B. Mikhailova, A.A. Sidorov, I.G. Fomina, G.G. Aleksandrov, V.M. Novotortsev, V.N. Ikorskii, I.L. Eremenko, Formation of bi- and tetranuclear cobalt(II) trimethylacetate complexes with 2-amino-5-methylpyridine and 2,6-diaminopyridine, Russ. Chem. Bull., 52 (2003) 2117–2124.
  8. K.J. Asali, M. El-Khateeb, L. Almazahreh, Kinetics and mechanism of ligand substitution reactions of (2,6-diaminopyridine) [M(CO)2] (M = Cr, Mo, W), Transition Met. Chem., 40 (2015) 471–475.
  9. V.B. Rana, P. Singh, D.P. Singh, M.P. Teotia, Trivalent chromium, manganese, iron and cobalt chelates of a tetradentate N6 macrocyclie ligand, Transition Met. Chem., 7 (1982) 174–177.
  10. S. Ilhan, H. Temel, Synthesis and characterization of a new macrocyclic Schiff base derived from 2,6-diaminopyridine and 1,10-bis(2-formylphenyl)-1,4,7,10-tetraoxadecane and its Cu(II), Ni(II), Pb(II), Co(III) and La(III) complexes, Transition Met. Chem., 32 (2007) 1039–1046.
  11. S. Ilhan, H. Temel, M. Sunkur, I. Teğin, Synthesis, structural characterization of new macrocyclic Schiff base derived from 1,6-bis(2-formylphenyl)hexane and 2,6-diaminopyridine and its metal complexes, IJC-A, 47 (2008) 560–564.
  12. F. Böhme, Ch. Kunert, H. Komber, D. Voigt, P. Friedel, M. Khodja, H. Wilde, Polymeric and macrocyclic ureas based on meta-substituted aromatic diamines, Macromolecules, 35 (2002) 4233–4237.
  13. Y.H. Zhai, Q. He, Q. Han, S. Duan, Solid-phase extraction of trace metal ions with magnetic nanoparticles modified with 2,6-diaminopyridine, Microchim. Acta, 178 (2012) 405–412.
  14. P. Cyganowski, D. Jermakowicz-Bartkowiak, P. Wilkowski, Odzyskiwanie metali szlachetnych na jonitach polimerowych, Chemik, 67 (2013) 317–324.
  15. https://www.chemicalbook.com/ProductMSDSDetailCB02 36195_EN.htm
  16. K. Witt, E. Radzyminska-Lenarcik, A. Kosciuszko, M. Gierszewska, K. Ziuziakowski, The influence of the morphology and mechanical properties of polymer inclusion membranes (PIMs) on zinc ion separation from aqueous solutions, Polymers, 10 (2018) 134–147.
  17. S. Lis, B. Marciniak, M. Elbanowski, On the role of the ground state Tb(III)/acetylacetone complex in sensitized emission of Tb(III) in ethanol solution, Monatsh. Chem., 120 (1989) 821–826.
  18. Z. Ren, L. Meng, Y. Dai, Extraction equilibria of copper(II) with D2EHPA in kerosene from aqueous solutions in acetate buffer media, J. Chem. Eng. Data, 52 (2007) 438–441.
  19. A.N. Banza, E. Gock, K. Kongolo, Base metals recovery from copper smelter slag by oxidising leaching and solvent extraction, Hydrometallurgy, 67 (2020) 63–69.
  20. E. Radzymińska-Lenarcik, K. Witt, Solvent extraction of copper ions by 3-substituted derivatives of β-diketones, Sep. Sci. Technol., 53 (2017) 1223–1229.
  21. B. Pośpiech, W. Walkowiak, Separation of copper(II), cobalt(II) and nickel(II) from chloride solutions by polymer inclusion membranes, Sep. Purif. Technol., 57 (2007) 461–465.
  22. A.L. Salgado, A.M.O. Veloso, D.D. Pereira, G.S. Gontijo, A. Salum, M.B. Mansur, Recovery of zinc and manganese from spent alkaline batteries by liquid–liquid extraction with Cyanex 272, J. Power Sources, 115 (2003) 367–373.
  23. M. Regel-Rosocka, M. Wiśniewski, Selective removal of zinc(II) from spent pickling solutions in the presence of iron ions with phosphonium ionic liquid Cyphos IL 101, Hydrometallurgy, 110 (2011) 85–90.
  24. M. Daryabor, A. Ahmadi, H. Zilouei, Solvent extraction of cadmium and zinc from sulphate solutions: comparison of mechanical agitation and ultrasonic irradiation, Ultrason. Sonochem., 34 (2017) 931–937.
  25. M. Ulewicz, E. Radzymińska-Lenarcik, Application of supported and polymer membrane with 1 decyl-2-methylimidazole for separation of transition metal ions, Physicochem. Probl. Miner. Process., 48 (20012) 91–102.
  26. F. Sellami, O. Kebiche-Senhadji, S. Marais, N. Couvrat, K. Fatyeyeva, Polymer inclusion membranes based on CTA/PBAT blend containing Aliquat 336 as extractant for removal of Cr(VI): efficiency, stability and selectivity, React. Funct. Polym., 139 (2019) 120–132.
  27. M. Baczyńska, M. Waszak, M. Nowicki, D. Prządka, S. Borysiak, M. Regel-Rosocka, Characterization of polymer inclusion membranes (PIMs) containing phosphonium ionic liquids as Zn(II) carriers, Ind. Eng. Chem. Res., 57 (2018) 5070–5082.