References
- G. Wiciak, J. Kotowicz, Experimental stand for CO2 membrane
separation, J. Power Technol., 91 (2011) 171–178.
- K.Q. Jiang, H. Yu, L.H. Chen, M.X. Fang, M. Azzi, A. Cottrell,
K.K. Li, An advanced, ammonia-based combined NOx/SOx/CO2 emission control process towards a low-cost, clean coal
technology, Appl. Energy, 260 (2020) 114316, https://doi.
org/10.1016/j.apenergy.2019.114316.
- O. Molchanov, K. Krpec, J. Horák, Electrostatic precipitation
as a method to control the emissions of particulate matter
from small-scale combustion units, J. Cleaner Prod., 246 (2020)
119022, https://doi.org/10.1016/j.jclepro.2019.119022.
- Z. Zhang, Q. Zeng, R.L. Hao, H.Z. He, F. Yang, X.Z. Mao,
Y.M. Mao, P. Zhao, Combustion behavior, emission characteristics
of SO2, SO3 and NO, and in-situ control of SO2 and
NO during the co-combustion of anthracite and dried sawdust
sludge, Sci. Total Environ., 646 (2019) 716–726.
- A. Dryjańska, K. Janusz-Szymańska, The analysis of economic
efficiency of oxy-type power plant on supercritical parameters
with a capacity of 600 MW, Archivum Combustionis, 33 (2013)
109–123.
- M.E. Munawer, Human health and environmental impacts of
coal combustion and post-combustion wastes, J. Sustainable
Min., 17 (2018) 87–96.
- A. Mukherjee, J.A. Okolie, A. Abdelrasoul, C. Niu, A.K. Dalai,
Review of post-combustion carbon dioxide capture technologies
using activated carbon, J. Environ. Sci., 86 (2019) 46–63.
- Y. Yamauchi, K. Akiyama, Innovative zero-emission coal
gasification power generation project, Energy Procedia,
37 (2013) 6579–6586.
- G. Verkhivker, E. Yantovski, Zero-emissions gas-fired cogeneration
of power and hydrogen, Int. J. Hydrogen Energy,
26 (2001) 1109–1113.
- G.D. Surywanshi, B.B.K. Pillai, V.S. Patnaikuni, R. Vooradi,
S.B. Anne, 4-E analyses of chemical looping combustion based
subcritical, supercritical and ultra-supercritical coal-fired
power plants, Energy Convers. Manage., 200 (2019) 112050,
https://doi.org/10.1016/j.enconman.2019.112050.
- A. Skorek-Osikowska, Ł. Bartela, J. Kotowicz, Thermodynamic
and ecological assessment of selected coal-fired power plants
integrated with carbon dioxide capture, Appl. Energy, 200
(2017) 73–88.
- W. Stanek, L. Czarnowska, K. Pikoń, M. Bogacka, Thermodynamic
and ecological assessment of selected coal-fired power
plants integrated with carbon dioxide capture, Energy, 92 (2015)
341–348.
- S. Belošević, I. Tomanović, V. Beljanski, D. Tucaković,
T. Živanović, Numerical prediction of processes for clean
and efficient combustion of pulverized coal in power plants,
Appl. Therm. Eng., 74 (2015) 102–110.
- V. Prabu, Integration of in-situ CO2-oxy coal gasification with
advanced power generating systems performing in a chemical
looping approach of clean combustion, Appl. Energy, 140 (2015)
1–13.
- M. Harasimowicz, P. Orluk, G. Zakrzewska-Trznadel,
A.G. Chmielewski, Application of polyimide membranes
for biogas purification and enrichment, J. Hazard. Mater.,
144 (2007) 698–702.
- G. Wiciak, Identification of select characteristics of separation
CO2 of the capillary polymer membrane, [Identyfikacja
wybranych charakterystyk separacji CO2 membrany kapilarnej
polimerowej], Rynek Energii, 100 (2012) 94–100 (in Polish).
- J. Swolkień, Polish underground coal mines as point sources
of methane emission to the atmosphere, Int. J. Greenhouse
Gas Control, 94 (2020) 102921, https://doi.org/10.1016/j.
ijggc.2019.102921.
- M. Rahman, M. Farhad Howladar, A. Hossain, A.T.M. Shahidul
Huqe Muzemder, A. Al Numanbakth, Impact assessment of
anthropogenic activities on water environment of Tillai River
and its surroundings, Barapukuria Thermal Power Plant,
Dinajpur, Bangladesh, Groundwater Sustainable Dev., 10 (2020)
100310, https://doi.org/10.1016/j.gsd.2019.100310.
- T. Trainer, Some problems in storing renewable energy,
Energy Policy, 110 (2017) 386–393.
- M. Diesendorf, B. Elliston, The feasibility of 100% renewable
electricity systems: a response to critics, Renewable Sustainable
Energy Rev., 93 (2018) 318–330.
- S.Y. Chang, J.K. Zhuo, S. Meng, S.Y. Qin, Q. Yao, Clean coal
technologies in china: current status and future perspectives,
Engineering, 2 (2016) 447–459.
- J. Meyer, J. Mastin, T.-K. Bjørnebøle, T. Ryberg, N. Eldrup,
Techno-economical study of the zero emission gas power
concept, Energy Procedia, 4 (2011) 1949–1956.
- H. Nami, F. Ranjbar, M. Yari, Thermodynamic assessment of
zero-emission power, hydrogen and methanol production
using captured CO2 from S-Graz oxy-fuel cycle and renewable
hydrogen, Energy Convers. Manage., 161 (2018) 53–65.
- L. Remiorz, G. Wiciak, K. Grzywnowicz, Investigation of
Applicability of Polyimide Membranes for Air Separation in
Oxy-MILD Zero-Emission Power Plants, XXIV Research and
Development in Power Engineering Conference, E3S Web of
Conferences, Warsaw, 137 (2019) 01033.
- T. Chmielniak, H. Łukowicz, Condensing power plant cycle
— assessing possibilities of improving its efficiency, Arch.
Thermodyn., 31 (2010) 105–113.
- W. Chen, L. van der Ham, A. Nijmeijer, L. Winnubst, Membraneintegrated
oxy-fuel combustion of coal: process design and
simulation, J. Membr. Sci., 492 (2015) 461–470.
- S. Saeidi, S.M.S. Mahmoudi, H. Nami, M. Yari, Energy and
exergy analyses of a novel near zero emission plant: combination
of MATIANT cycle with gasification unit, Appl. Therm. Eng.,
108 (2016) 893–904.
- M. Czyperek, P. Zapp, H.J.M. Bouwmeester, M. Modigell,
K.-V. Peinemann, I. Voigt, W.A. Meulenberg, L. Singheiser,
D. Stöver, MEM-BRAIN gas separation membranes for zeroemission
fossil power plants, Energy Procedia, 1 (2009) 303–310.
- M. Rezakazemi, M. Sadrzadeh, T. Matsuura, Thermally stable
polymers for advanced high-performance gas separation
membranes, Prog. Energy Combust. Sci., 66 (2018) 1–41.
- C.A. Scholes, G.W. Stevens, S.E. Kentish, Membrane gas
separation applications in natural gas processing, Fuel, 96 (2012)
15–28.
- D.M. Zhang, H.Z. Wang, C.X. Li, H. Meng, Modeling of purgegas
recovery using membrane separation, Chem. Eng. Res.
Des., 125 (2017) 361–366.
- T. Banaszkiewicz, M. Chorowski, W. Gizicki, Comparative
analysis of oxygen production for oxy-combustion application,
Energy Procedia, 51 (2014) 127–134.
- A. Iulianelli, E. Drioli, Membrane engineering: latest
advancements in gas separation and pre-treatment processes,
petrochemical industry and refinery, and future perspectives
in emerging applications, Fuel Process. Technol., 206 (2020)
106464, https://doi.org/10.1016/j.fuproc.2020.106464.
- M.B. Toftegaard, J. Brix, P.A. Jensen, P. Glarborg, A.D. Jensen,
Oxy-fuel combustion of solid fuels, Prog. Energy Combust. Sci.,
36 (2010) 581–625.
- K.K. Chen, W. Salim, Y. Han, D.Z. Wu, W.S.W. Ho, Fabrication
and scale-up of multi-leaf spiral-wound membrane modules for
CO2 capture from flue gas, J. Membr. Sci., 595 (2020) 117504,
https://doi.org/10.1016/j.memsci.2019.117504.
- Y. Han, W. Salim, K.K. Chen, D.Z. Wu, W.S.W. Ho, Field trial of
spiral-wound facilitated transport membrane module for CO2
capture from flue gas, J. Membr. Sci., 575 (2019) 242–251.
- S.H. Lee, S.K. Yun, J.-K. Kim, Development of novel sub-ambient
membrane systems for energy-efficient post-combustion CO2
capture, Appl. Energy, 238 (2019) 1060–1073.
- G. Wiciak, The influence of the moisture content in gaseous
CO2/N2 mixture on selected parameters of CO2 separation in a
capillary polymeric membrane, Desal. Water Treat., 128 (2018)
314–323.
- R. Bounaceur, E. Berger, M. Pfister, A.A.R. Santos, E. Favre,
Rigorous variable permeability modelling and process
simulation for the design of polymeric membrane gas separation
units: MEMSIC simulation tool, J. Membr. Sci., 523 (2017) 77–91.