References

  1. G. Wiciak, J. Kotowicz, Experimental stand for CO2 membrane separation, J. Power Technol., 91 (2011) 171–178.
  2. K.Q. Jiang, H. Yu, L.H. Chen, M.X. Fang, M. Azzi, A. Cottrell, K.K. Li, An advanced, ammonia-based combined NOx/SOx/CO2 emission control process towards a low-cost, clean coal technology, Appl. Energy, 260 (2020) 114316, https://doi. org/10.1016/j.apenergy.2019.114316.
  3. O. Molchanov, K. Krpec, J. Horák, Electrostatic precipitation as a method to control the emissions of particulate matter from small-scale combustion units, J. Cleaner Prod., 246 (2020) 119022, https://doi.org/10.1016/j.jclepro.2019.119022.
  4. Z. Zhang, Q. Zeng, R.L. Hao, H.Z. He, F. Yang, X.Z. Mao, Y.M. Mao, P. Zhao, Combustion behavior, emission characteristics of SO2, SO3 and NO, and in-situ control of SO2 and NO during the co-combustion of anthracite and dried sawdust sludge, Sci. Total Environ., 646 (2019) 716–726.
  5. A. Dryjańska, K. Janusz-Szymańska, The analysis of economic efficiency of oxy-type power plant on supercritical parameters with a capacity of 600 MW, Archivum Combustionis, 33 (2013) 109–123.
  6. M.E. Munawer, Human health and environmental impacts of coal combustion and post-combustion wastes, J. Sustainable Min., 17 (2018) 87–96.
  7. A. Mukherjee, J.A. Okolie, A. Abdelrasoul, C. Niu, A.K. Dalai, Review of post-combustion carbon dioxide capture technologies using activated carbon, J. Environ. Sci., 86 (2019) 46–63.
  8. Y. Yamauchi, K. Akiyama, Innovative zero-emission coal gasification power generation project, Energy Procedia, 37 (2013) 6579–6586.
  9. G. Verkhivker, E. Yantovski, Zero-emissions gas-fired cogeneration of power and hydrogen, Int. J. Hydrogen Energy, 26 (2001) 1109–1113.
  10. G.D. Surywanshi, B.B.K. Pillai, V.S. Patnaikuni, R. Vooradi, S.B. Anne, 4-E analyses of chemical looping combustion based subcritical, supercritical and ultra-supercritical coal-fired power plants, Energy Convers. Manage., 200 (2019) 112050, https://doi.org/10.1016/j.enconman.2019.112050.
  11. A. Skorek-Osikowska, Ł. Bartela, J. Kotowicz, Thermodynamic and ecological assessment of selected coal-fired power plants integrated with carbon dioxide capture, Appl. Energy, 200 (2017) 73–88.
  12. W. Stanek, L. Czarnowska, K. Pikoń, M. Bogacka, Thermodynamic and ecological assessment of selected coal-fired power plants integrated with carbon dioxide capture, Energy, 92 (2015) 341–348.
  13. S. Belošević, I. Tomanović, V. Beljanski, D. Tucaković, T. Živanović, Numerical prediction of processes for clean and efficient combustion of pulverized coal in power plants, Appl. Therm. Eng., 74 (2015) 102–110.
  14. V. Prabu, Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion, Appl. Energy, 140 (2015) 1–13.
  15. M. Harasimowicz, P. Orluk, G. Zakrzewska-Trznadel, A.G. Chmielewski, Application of polyimide membranes for biogas purification and enrichment, J. Hazard. Mater., 144 (2007) 698–702.
  16. G. Wiciak, Identification of select characteristics of separation CO2 of the capillary polymer membrane, [Identyfikacja wybranych charakterystyk separacji CO2 membrany kapilarnej polimerowej], Rynek Energii, 100 (2012) 94–100 (in Polish).
  17. J. Swolkień, Polish underground coal mines as point sources of methane emission to the atmosphere, Int. J. Greenhouse Gas Control, 94 (2020) 102921, https://doi.org/10.1016/j. ijggc.2019.102921.
  18. M. Rahman, M. Farhad Howladar, A. Hossain, A.T.M. Shahidul Huqe Muzemder, A. Al Numanbakth, Impact assessment of anthropogenic activities on water environment of Tillai River and its surroundings, Barapukuria Thermal Power Plant, Dinajpur, Bangladesh, Groundwater Sustainable Dev., 10 (2020) 100310, https://doi.org/10.1016/j.gsd.2019.100310.
  19. T. Trainer, Some problems in storing renewable energy, Energy Policy, 110 (2017) 386–393.
  20. M. Diesendorf, B. Elliston, The feasibility of 100% renewable electricity systems: a response to critics, Renewable Sustainable Energy Rev., 93 (2018) 318–330.
  21. S.Y. Chang, J.K. Zhuo, S. Meng, S.Y. Qin, Q. Yao, Clean coal technologies in china: current status and future perspectives, Engineering, 2 (2016) 447–459.
  22. J. Meyer, J. Mastin, T.-K. Bjørnebøle, T. Ryberg, N. Eldrup, Techno-economical study of the zero emission gas power concept, Energy Procedia, 4 (2011) 1949–1956.
  23. H. Nami, F. Ranjbar, M. Yari, Thermodynamic assessment of zero-emission power, hydrogen and methanol production using captured CO2 from S-Graz oxy-fuel cycle and renewable hydrogen, Energy Convers. Manage., 161 (2018) 53–65.
  24. L. Remiorz, G. Wiciak, K. Grzywnowicz, Investigation of Applicability of Polyimide Membranes for Air Separation in Oxy-MILD Zero-Emission Power Plants, XXIV Research and Development in Power Engineering Conference, E3S Web of Conferences, Warsaw, 137 (2019) 01033.
  25. T. Chmielniak, H. Łukowicz, Condensing power plant cycle — assessing possibilities of improving its efficiency, Arch. Thermodyn., 31 (2010) 105–113.
  26. W. Chen, L. van der Ham, A. Nijmeijer, L. Winnubst, Membraneintegrated oxy-fuel combustion of coal: process design and simulation, J. Membr. Sci., 492 (2015) 461–470.
  27. S. Saeidi, S.M.S. Mahmoudi, H. Nami, M. Yari, Energy and exergy analyses of a novel near zero emission plant: combination of MATIANT cycle with gasification unit, Appl. Therm. Eng., 108 (2016) 893–904.
  28. M. Czyperek, P. Zapp, H.J.M. Bouwmeester, M. Modigell, K.-V. Peinemann, I. Voigt, W.A. Meulenberg, L. Singheiser, D. Stöver, MEM-BRAIN gas separation membranes for zeroemission fossil power plants, Energy Procedia, 1 (2009) 303–310.
  29. M. Rezakazemi, M. Sadrzadeh, T. Matsuura, Thermally stable polymers for advanced high-performance gas separation membranes, Prog. Energy Combust. Sci., 66 (2018) 1–41.
  30. C.A. Scholes, G.W. Stevens, S.E. Kentish, Membrane gas separation applications in natural gas processing, Fuel, 96 (2012) 15–28.
  31. D.M. Zhang, H.Z. Wang, C.X. Li, H. Meng, Modeling of purgegas recovery using membrane separation, Chem. Eng. Res. Des., 125 (2017) 361–366.
  32. T. Banaszkiewicz, M. Chorowski, W. Gizicki, Comparative analysis of oxygen production for oxy-combustion application, Energy Procedia, 51 (2014) 127–134.
  33. A. Iulianelli, E. Drioli, Membrane engineering: latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications, Fuel Process. Technol., 206 (2020) 106464, https://doi.org/10.1016/j.fuproc.2020.106464.
  34. M.B. Toftegaard, J. Brix, P.A. Jensen, P. Glarborg, A.D. Jensen, Oxy-fuel combustion of solid fuels, Prog. Energy Combust. Sci., 36 (2010) 581–625.
  35. K.K. Chen, W. Salim, Y. Han, D.Z. Wu, W.S.W. Ho, Fabrication and scale-up of multi-leaf spiral-wound membrane modules for CO2 capture from flue gas, J. Membr. Sci., 595 (2020) 117504, https://doi.org/10.1016/j.memsci.2019.117504.
  36. Y. Han, W. Salim, K.K. Chen, D.Z. Wu, W.S.W. Ho, Field trial of spiral-wound facilitated transport membrane module for CO2 capture from flue gas, J. Membr. Sci., 575 (2019) 242–251.
  37. S.H. Lee, S.K. Yun, J.-K. Kim, Development of novel sub-ambient membrane systems for energy-efficient post-combustion CO2 capture, Appl. Energy, 238 (2019) 1060–1073.
  38. G. Wiciak, The influence of the moisture content in gaseous CO2/N2 mixture on selected parameters of CO2 separation in a capillary polymeric membrane, Desal. Water Treat., 128 (2018) 314–323.
  39. R. Bounaceur, E. Berger, M. Pfister, A.A.R. Santos, E. Favre, Rigorous variable permeability modelling and process simulation for the design of polymeric membrane gas separation units: MEMSIC simulation tool, J. Membr. Sci., 523 (2017) 77–91.