References

  1. V.G. Gude, Geothermal source potential for water desalination – current status and future perspective, Renewable Sustainable Energy Rev., 57 (2016) 1038–1065.
  2. B. Tomaszewska, M. Tyszer, Assessment of the influence of temperature and pressure on the prediction of the precipitation of minerals during desalination process, Desalination, 424 (2017) 102–109.
  3. B. Tomaszewska, E. Kmiecik, K. Wątor, M. Tyszer, Use of numerical modelling in the prediction of membrane scaling. Reaction between antiscalants and feedwater, Desalination, 427 (2018) 27–34.
  4. J.A. Sanmartino, M. Khayet, M.C. Garcia-Payo, H. El-Bakouri, A. Riaza, Treatment of reverse osmosis brine by direct contact membrane distillation: chemical pretreatment approach, Desalination, 420 (2017) 79–90.
  5. B.A. Qureshi, S.M. Zubair, Exergetic efficiency of NF, RO and EDR desalination plants, Desalination, 378 (2016) 92–99.
  6. S. Alzahrani, A.W. Mohammad, N. Hilal, P. Abdullah, O. Jaafar, Comparative study of NF and RO membranes in the treatment of produced water II: toxicity removal efficiency, Desalination, 315 (2013) 27–32.
  7. W. Peng, A. Maleki, M.A. Rosen, P. Azarikhah, Optimization of a hybrid system for solar-wind-based water desalination by reverse osmosis: comparison of approaches, Desalination, 442 (2018) 16–31.
  8. A.M. Blanco-Marigorta, A. Lozano-Medina, J.D. Marcos, The exergetic efficiency as a performance evaluation tool in reverse osmosis desalination plants in operation, Desalination, 413 (2017) 19–28.
  9. F.E. Ahmed, R. Hashaikeh, A. Daibat, N. Hilal, Mathematical and optimization modelling in desalination: state-of-the-art and future direction, Desalination, 469 (2019) 114092, https://doi. org/10.1016/j.desal.2019.114092.
  10. J. Duan, Y. Pan, F. Pacheco, E. Litwiller, Z. Lai, I. Pinnau, Highperformance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8, J. Membr. Sci., 476 (2015) 303–310.
  11. B.A. Qureshi, S.M. Zubair, Exergetic analysis of a brackish water reverse osmosis desalination unit with various energy recovery systems, Energy, 93 (2015) 256–265.
  12. B.K. Pramanik, Y. Gao, L. Fan, F.A. Roddick, Z. Liu, Antiscaling effect of polyaspartic acid and its derivative for RO membranes used for saline wastewater and brackish water desalination, Desalination, 404 (2017) 224–229.
  13. A. Ruiz-Garcia, J. Feo-Garcia, Estimation of maximum water recovery in RO desalination for different feedwater inorganic compositions, Desal. Water Treat., 70 (2017) 34–45.
  14. J. Nihill, A. Date, P. Lappas, J. Velardo, Investigating the prospects of water desalination using a thermal water pump coupled with reverse osmosis membrane, Desalination, 445 (2018) 256–265.
  15. A. Ruiz-Garcia, I. Nuez, Long-term performance decline in a brackish water reverse osmosis desalination plant. Predictive model for the water permeability coefficient, Desalination, 397 (2016) 101–107.
  16. A. Matin, F. Rahman, H.Z. Shafi, S.M. Zubair, Scaling of reverse osmosis membranes used in water desalination: phenomena, impact, and control; future directions, Desalination, 455 (2019) 135–157.
  17. G.-K. Lu, H. Huang, Dependence of initial silica scaling on the surface physicochemical properties of reverse osmosis membranes during bench-scale brackish water desalination, Water Res., 150 (2019) 358–367.
  18. T. Neveux, M. Bretaud, N. Chim, K. Shakourzadeh, S. Rapenne, Pilot plant experiments and modeling of CaCO3 growth inhibition by the use of antiscalant polymers in recirculating cooling circuits, Desalination, 397 (2016) 43–52.
  19. A. Ruiz-Garcia, Antiscalant cost and maximum water recovery in reverse osmosis for different inorganic composition of groundwater, Desal. Water Treat., 73 (2017) 46–53.
  20. J.A. Bush, J. Vanneste, T.Y. Cath, Comparison of membrane distillation and high-temperature nanofiltration processes for treatment of silica-saturated water, J. Membr. Sci., 570–571 (2019) 258–269.
  21. M.O. Atallah, M.A. Farahat, M.E. Lofty, T. Senjyu, Operation of conventional and unconventional energy sources to drive a reverse osmosis desalination plant in Sinai Peninsula, Egypt, Renewable Energy, 145 (2020) 141–152.
  22. W.L. Ang, D. Nordin, A.W. Mohammad, A. Benamor, N. Hilal, Effect of membrane performance including fouling on cost optimization in brackish water desalination process, Chem. Eng. Res. Des., 117 (2017) 401–413.
  23. X.H. Hu, J.J. Sun, R.C. Peng, Q. Tang, Y.B. Luo, P. Yu, Novel thinfilm composite reverse osmosis membrane with superior water flux using parallel magnetic field induced magnetic multiwalled carbon nanotubes, J. Cleaner Prod., 242 (2020) 118423, https://doi.org/10.1016/j.jclepro.2019.118423.
  24. A. Lilane, D. Saifaoui, S. Hariss, H. Jenkal, M. Chouiekh, Modeling and simulation of the performances of the reverse osmosis membrane, Mater. Today: Proc., 24 (2020) 114–118.
  25. X. Zhang, C. Liu, J. Yang, C.-J. Zhu, L. Zhang, Z.-K. Xu, Nanofiltration membranes with hydrophobic microfiltration substrates for robust structure stability and high water permeation flux, J. Membr. Sci., 593 (2020) 177444, https://doi. org/10.1016/j.memsci.2019.117444.
  26. E. Sahinkaya, S. Tuncman, I. Koc, A.R. Guner, S. Ciftci, A. Aygun, S. Sengul, Performance of a pilot-scale reverse osmosis process for water recovery from biologically-treated textile wastewater, J. Environ. Manage., 249 (2019) 109382, https://doi.org/10.1016/j.jenvman.2019.109382.
  27. A.M. Blanco-Marigorta, A. Lozano-Medina, J.D. Marcos, A critical review of definitions for exergetic efficiency in reverse osmosis desalination plants, Energy, 137 (2017) 752–760.
  28. B. Tomaszewka, M. Bodzek, M. Rajca, M. Tyszer, Geothermal water treatment. Membrane selection for the RO process, Desal. Water Treat., 64 (2017) 292–297.
  29. B. Tomaszewska, M. Rajca, E. Kmiecik, M. Bodzek, W. Bujakowski, M. Tyszer, K. Wator, Process of geothermal water treatment by reverse osmosis. The research with antiscalants, Desal. Water Treat., 74 (2017) 1–10
  30. M. Tyszer, B. Tomaszewska, Pilot study of the impact of geothermal water RO concentrate volume minimization on the possibility of comprehensive further use, Desal. Water Treat., 157 (2019) 250–258.
  31. M. Rajca, M. Bodzek, B. Tomaszewska, M. Tyszer, E. Kmiecik, K. Wątor, Prevention of scaling during the desalination of geothermal water by means of nanofiltration, Desal. Water Treat., 73 (2017) 198–207.
  32. B. Tomaszewska, M. Tyszer, M. Bodzek, M. Rajca, The concept of multi-variant use of geothermal water concentrates, Desal. Water Treat., 128 (2017) 179–186.
  33. B. Tomaszewska, M. Rajca, E. Kmiecik, M. Bodzek, W. Bujakowski, K. Wątor, The influence of selected factors on the effectiveness of pre-treatment of geothermal water during the nanofiltration process, Desalination, 406 (2017) 74–82.
  34. DOW FILMTEC BW30FR-400 High Productivity Fouling Resistant RO Element – Product Information (Form No. 609- 00391-0910: https://www.lenntech.com/Data-sheets/Dow- Filmtec-BW30FR-400.pdf).
  35. DOW FILMTEC BW30HR-440i High Productivity, High Rejection Brackish Water RO Element with iLEC™ Technology (Form No. 609-02171-0512): http://www.lenntech.com/Datasheets/ Dow-Filmtec-BW30HR-440i.pdf).
  36. LEWABRANE®RO B400 HR Membrane, Lanxess Deutschland gmbH BU LPT. Available at: http://lewabrane.com/uploads/ tx_lxsmatrix/56922478-eng.pdf).
  37. AG Membrane, GE Power, Water & Process Technologies. Available at: http://www.bmpatel.com/GE-Filters-&- Membrance.pdf.
  38. DOW FILMTEC NF270 Nanofiltration Element for Commercial System – Product Information (Form No. 609-00519-1206. Available at: https://www.lenntech.com/Data-sheets/Dow- Filmtec-NF270-4040.pdf).
  39. DOW FILMTEC NF90 Nanofiltration High Productivity Element – Product Information (Form No. 609-00378-1206. Available at: https://www.lenntech.com/Data-sheets/Dow- Filmtec-NF90-400.pdf).
  40. https://www.worldofchemicals.com/chemicals/chemicalproperties/ hydrex-4101.html)
  41. https://www.worldofchemicals.com/chemicals/chemicalproperties/ hydrex-4102.html)
  42. https://www.worldofchemicals.com/chemicals/chemicalproperties/ hydrex-4104.html)
  43. https://www.worldofchemicals.com/chemicals/chemicalproperties/ hydrex-4109.html)
  44. https://www.link-chemie.com/de/produkte/wasseraufberei tung/chemkomplex-520-asc.html)
  45. H. Sharon, K.S. Reddy, D. Krithika, L. Philip, Viability assessment of solar distillation for desalination in coastal locations T of Indian sub-continent – thermodynamic, condensate quality and enviro-economic aspects, Sol. Energy, 197 (2020) 84–98.
  46. J. Adrianne, F. Alardin, Thermal and membrane process economics: optimized selection for seawater desalination, Desalination, 153 (2020) 305–311.
  47. A. Farsi, I. Dincer, Development and evaluation of an integrated MED/membrane desalination system, Desalination, 463 (2019) 55–68.
  48. S. Lin, M. Elimelech, Kinetic and energetics trade-off in reverse osmosis desalination with different configurations, Desalination, 401 (2017) 42–52.
  49. N. Voutchkov, Energy use for membrane seawater desalination – current status and trends, Desalination, 431 (2018) 2–14.
  50. Z.R. Chong, T. He, P. Babu, J.-N. Zheng, P. Linga, Economic evaluation of energy efficient hydrate based desalination utilizing cold energy from liquefied natural gas (LNG), Desalination, 463 (2019) 69–80.
  51. H. Saleem, S.J. Zaidi, Nanoparticles in reverse osmosis membranes for desalination: a state of the art review, Desalination, 475 (2020) 114171, https://doi.org/10.1016/j. desal.2019.114171.
  52. R. Miladi, N. Frikha, A. Kheiri, S. Gabsi, Energetic performance analysis of seawater desalination with a solar membrane distillation, Energy Convers. Manage, 185 (2019) 143–154.
  53. T. Altmann, J. Robert, A. Bouma, J. Swaminathan, J.H. Lienhard V, Primary energy and exergy of desalination technologies in a power-water cogeneration scheme, Appl. Energy, 252 (2019) 113319, https://doi.org/10.1016/j.apenergy.2019.113319.
  54. A. Altaee, A. Braytee, G.J. Millar, O. Naji, Energy efficiency of hollow fibre membrane module in the forward osmosis seawater desalination process, J. Membr. Sci., 587 (2019) 117165, https://doi.org/10.1016/j.memsci.2019.06.005.
  55. A. Deshmukh, C. Boo, V. Karanikola, S. Lin, A.P. Straub, T. Tong, D.M. Warsinger, M. Elimelech, Membrane distillation at the water-energy nexus: limits, opportunities, and challenges, Energy Environ. Sci., 11 (2018) 1177.
  56. M.W. Shahzad, M. Burhan, K.C. Ng, A standard primary energy approach for comparing desalination processes, Clean Water, 1 (2019) 1–7.
  57. B. Tomaszewska, Ed., Pozyskanie wód przeznaczonych do spożycia oraz cieczy i substancji balneologicznych w procesie uzdatniania schłodzonych wód geotermalnych. Wyd. IGSMiE PAN, Kraków, 2018.