References

  1. M.E. Matsubara, K. Helwig, C. Hunter, J. Roberts, E.L. Subtil, L.H.G. Coelho, Amoxicillin removal by pre-denitrification membrane bioreactor (A/O-MBR): performance evaluation, degradation by-products, and antibiotic resistant bacteria, Ecotoxicol. Environ. Saf., 192 (2020) 110258, https://doi. org/10.1016/j.ecoenv.2020.110258.
  2. Y.S. Ji, X.L. Zhang, J.T. Gao, S.J. Zhao, Y.K. Dou, Y. Xue, L.H. Chen, Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides, Ecotoxicol. Environ. Saf., 188 (2020) 109887, https://doi.org/10.1016/j. ecoenv.2019.109887.
  3. P.C. Rúa-Gómez, W. Püttmann, Degradation of lidocaine, tramadol, venlafaxine and the metabolites O-desmethyltramadol and O-desmethylvenlafaxine in surface waters, Chemosphere., 90 (2013) 1952–1959.
  4. S. Arriaga, N. de Jonge, M.L. Nielsen, H.R. Andersen, V. Borregaard, K. Jewel, T.A. Ternes, J.L. Nielsen, Evaluation of a membrane bioreactor system as post-treatment in waste water treatment for better removal of micropollutants, Water Res., 107 (2016) 37–46.
  5. P.C. Rúa-Gómez, W. Püttmann, Occurrence and removal of lidocaine, tramadol, venlafaxine, and their metabolites in German wastewater treatment plants, Environ. Sci. Pollut. Res., 19 (2012) 689–699.
  6. O. Golovko, V. Kumar, G. Fedorova, T. Randak, R. Grabic, Removal and seasonal variability of selected analgesics/antiinflammatory, anti-hypertensive/cardiovascular pharmaceuticals and UV filters in wastewater treatment plant, Environ. Sci. Pollut. Res., 21 (2014) 7578–7585.
  7. V. Calisto, C.I.A. Ferreira, J.A.B.P. Oliveira, M. Otero, V.I. Esteves, Adsorptive removal of pharmaceuticals from water by commercial and waste-based carbons, J. Environ. Manage., 152 (2015) 83–90.
  8. C. Wahlberg, B. Björlenius, N. Paxéus, Fluxes of 13 selected pharmaceuticals in the water cycle of Stockholm, Sweden, Water Sci. Technol., 63 (2011) 1772–1780.
  9. J. Vymazal, T. Dvořáková Březinová, M. Koželuh, L. Kule, Occurrence and removal of pharmaceuticals in four full-scale constructed wetlands in the Czech Republic – the first year of monitoring, Ecol. Eng., 98 (2017) 354–364.
  10. S.C. Monteiro, A.B.A. Boxall, Factors affecting the degradation of pharmaceuticals in agricultural soils, Environ. Toxicol. Chem., 28 (2009) 2546–2554.
  11. Y. Zhang, H. Zhu, U. Szewzyk, S. Lübbecke, S. Uwe Geissen, Removal of emerging organic contaminants with a pilot-scale biofilter packed with natural manganese oxides, Chem. Eng. J., 317 (2017) 454–460.
  12. P. Sehonova, Z. Svobodova, P. Dolezelova, P. Vosmerova, C. Faggio, Effects of waterborne antidepressants on non-target animals living in the aquatic environment: a review, Sci. Total Environ., 631–632 (2018) 789–794.
  13. S. Mompelat, B. Le Bot, O. Thomas, Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water, Environ. Int., 35 (2009) 803–814.
  14. D. Löffler, J. Römbke, M. Meller, T.A. Ternes, Environmental fate of pharmaceuticals in water/sediment systems, Environ. Sci. Technol., 39 (2005) 5209–5218.
  15. P.H. Roberts, K.V. Thomas, The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment, Sci. Total Environ., 356 (2006) 143–153.
  16. D.W. Kolpin, M. Skopec, M.T. Meyer, E.T. Furlong, S.D. Zaugg, Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions, Sci. Total Environ., 328 (2004) 119–130.
  17. A.C. Hari, R.A. Paruchuri, D.A. Sabatini, T.C.G. Kibbey, Effects of pH and cationic and nonionic surfactants on the adsorption of pharmaceutical to a natural aquifer material, Environ. Sci. Technol., 39 (2005) 2592–2598.
  18. A.Y. Lin, M. Reinhard, Photodegradation of common environmental pharmaceuticals and estrogens in river water, Environ. Toxicol. Chem., 24 (2005) 1303–1309.
  19. G. Annadurai, Design of optimum response surface experiments for adsorption of direct dye on chitosan, Bioprocess Eng., 23 (2000) 451–455.
  20. B. Kasprzyk-Hordern, R.M. Dinsdale, A.J. Guwy, Illicit drugs and pharmaceuticals in the environment – forensic applications of environmental data, Part 2: pharmaceuticals as chemical markers of faecal water contamination, Environ. Pollut., 157 (2009) 1778–1786.
  21. M. Javanbakht, A.M. Attaran, M.H. Namjumanesh, M. Esfandyari-Manesh, B. Akbari-Adergani, Solid-phase extraction of tramadol from plasma and urine samples using a novel water-compatible molecularly imprinted polymer, J. Chromatogr. B, 878 (2010) 1700–1706.
  22. L.R. Rad, M. Irani, F. Divsar, H. Pourahmad, M.S. Sayyafan, I. Haririan, Simultaneous degradation of phenol and paracetamol during photo-Fenton process: design and optimization, J. Taiwan Inst. Chem. Eng., 47 (2015) 190–196.
  23. M.G. Cantwell, D.R. Katz, J.C. Sullivan, D. Shapley, J. Lipscomb, J. Epstein, A.R. Juhl, C. Knudson, G.D. O’Mullan, Spatial patterns of pharmaceuticals and wastewater tracers in the Hudson River Estuary, Water Res., 137 (2018) 335–343.
  24. M. Rožman, V. Acuña, M. Petrović, Effects of chronic pollution and water flow intermittency on stream biofilms biodegradation capacity, Environ. Pollut., 233 (2018) 1131–1137.
  25. C. Lütke Eversloh, M. Schulz, M. Wagner, T.A. Ternes, Electrochemical oxidation of tramadol in low-salinity reverse osmosis concentrates using boron-doped diamond anodes, Water Res., 72 (2015) 293–304.
  26. L. Zhang, X. Yin, S.F.Y. Li, Bio-electrochemical degradation of paracetamol in a microbial fuel cell-Fenton system, Chem. Eng. J., 276 (2015) 185–192.
  27. U.K. Garg, M.P. Kaur, V.K. Garg, D. Sud, Removal of nickel(II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach, Bioresour. Technol., 99 (2008) 1325–1331.
  28. T. Thiebault, R. Guégan, M. Boussafir, Adsorption mechanisms of emerging micro-pollutants with a clay mineral: case of tramadol and doxepine pharmaceutical products, J. Colloid Interface Sci., 453 (2015) 1–8.
  29. J.N. Sahu, J. Acharya, B.C. Meikap, Response surface modeling and optimization of chromium(VI) removal from aqueous solution using Tamarind wood activated carbon in batch process, J. Hazard. Mater., 172 (2009) 818–825.
  30. A. Altinişik, E. Gür, Y. Seki, A natural sorbent, Luffa cylindrica for the removal of a model basic dye, J. Hazard. Mater., 179 (2010) 658–664.
  31. H. Bendjeffal, A. Djebli, H. Mamine, T. Metidji, M. Dahak, N. Rebbani, Y. Bouhedja, Effect of the chelating agents on biosorption of hexavalent chromium using Agave sisalana fibers, Chin. J. Chem. Eng., 26 (2018) 984–992.
  32. H. Shahbeig, N. Bagheri, S.A. Ghorbanian, A. Hallajisani, S. Poorkarimi, A new adsorption isotherm model of aqueous solutions on granular activated carbon, World J. Model. Simul., 9 (2013) 243–254.
  33. B. Armagan, F. Toprak, Optimum isotherm parameters for reactive azo dye onto pistachio nut shells: comparison of linear and non-linear methods, Polish J. Environ. Stud., 22 (2013) 1007–1011.
  34. F.C. Wu, B.L. Liu, K.T. Wu, R.L. Tseng, A new linear form analysis of Redlich–Peterson isotherm equation for the adsorptions of dyes, Chem. Eng. J., 162 (2010) 21–27.
  35. I. Khalid, S. Ali, M.T. Hussain, R. Ashra, A. Khan, N. Ahmad, investigating the impact of hard water on natural dyeing of cotton fabric by Tagetes erecta flowers, J. Chem. Soc. Pak., 41 (2019) 788–795.
  36. N. Haimour, R. El-Bishtawi, A. Ail-Wahbi, Equilibrium adsorption of hydrogen sulfide onto CuO and ZnO, Desalination, 181 (2005) 145–152.
  37. O. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys. Chem., 63 (1959) 1024.
  38. P.B. Vilela, A. Dalalibera, E.C. Duminelli, V.A. Becegato, A.T. Paulino, Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel, Environ. Sci. Pollut. Res., 26 (2019) 28481–28489.
  39. M.C. Ncibi, Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis, J. Hazard. Mater., 153 (2008) 207–212.
  40. I. Quesada-Peñate, C. Julcour-Lebigue, U.J. Jáuregui-Haza, A.M. Wilhelm, H. Delmas, Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption – catalytic wet air oxidation on activated carbons, J. Hazard. Mater., 221–222 (2012) 131–138.
  41. A. Malakahmad, S.Y. Chuan, Application of response surface methodology to optimize coagulation-flocculation treatment of anaerobically digested palm oil mill effluent using alum, Desal. Water Treat., 51 (2013) 6729–6735.
  42. Q. Chen, Q. Shi, S.N. Gorb, Z.Y. Li, A multiscale study on the structural and mechanical properties of the luffa sponge from Luffa cylindrica plant, J. Biomech., 47 (2014) 1332–1339.
  43. K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 54 (1982) 2201–2218.
  44. M. Thommes, K. Kaneko, A. V Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051–1069.
  45. B. Jiang, Z.G. Shen, J.B. Shen, D. Yu, X.Y. Sheng, H.F. Lu, Germination and growth of sponge gourd (Luffa cylindrica) pollen tubes and FTIR analysis of the pollen tube wall, Sci. Hortic. (Amsterdam), 122 (2009) 638–644.
  46. Ç. Sarici-Özdemir, F. Kiliç, Kinetics behavior of methylene blue onto agricultural waste, Part. Sci. Technol., 36 (2018) 194–201.
  47. D.C.P. Quinayá, J.R.M. D’almeida, Nondestructive characterization of epoxy matrix composites reinforced with luffa lignocellulosic fibers, Rev. Mater., 22 (2017), https://doi. org/10.1590/s1517-707620170002.0181.
  48. Ç. Sarici Özdemİr, Adsorptive removal of methylene blue by fruit shell: isotherm studies, Fullerenes Nanotubes Carbon Nanostruct., 26 (2018) 570–577.
  49. S. Kalia, A. Kumar, B.S. Kaith, Sunn hemp cellulose graft copolymers polyhydroxybutyrate composites: morphological and mechanical studies, Adv. Mater. Lett., 2 (2011) 17–25.
  50. V. Bernal, A. Erto, L. Giraldo, J.C. Moreno-Piraján, Effect of solution ph on the adsorption of paracetamol on chemically modified activated carbons, Molecules, 22 (2017) 1032.
  51. E.K. Radwan, H.H. Abdel Ghafar, A.S. Moursy, C.H. Langford, A.H. Bedair, G. Achari, Adsorptive removal of hazardous organic water pollutants by humic acid–carbon hybrid materials: kinetics and isotherm study, Desal. Water Treat., 80 (2017) 297–305.
  52. H.H. Abdel Ghafar, M.A. Embaby, E.K. Radwan, A.M. Abdel-Aty, Biosorptive removal of basic dye methylene blue using raw and CaCl2 treated biomass of green microalga scenedesmus obliquus, Desal. Water Treat., 81 (2017) 274–281.
  53. S.T. El-Wakeel, E.K. Radwan, H.H. Abdel Ghafar, A.S. Moursy, Humic acid-carbon hybrid material as lead(II) ions adsorbent, Desal. Water Treat., 74 (2017) 216–223.
  54. H. Demir, A. Top, D. Balköse, S. Ülkü, Dye adsorption behavior of Luffa cylindrica fibers, J. Hazard. Mater., 153 (2008) 389–394.
  55. S.Y. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, 1898.
  56. G. Blanchard, M. Maunaye, G. Martin, Removal of heavy metals from waters by means of natural zeolites, Water Res., 18 (1984) 1501–1507.
  57. B. Weber, E. Kaps, J. Obel, W. Bauer, Synthesis and magnetic properties of new octahedral iron(II) complexes, Z. Anorg. Allg. Chem., 634 (2008) 1421–1426.
  58. N. Sonetaka, H.-J. Fan, S. Kobayashi, H.-N. Chang, E. Furuya, Simultaneous determination of intraparticle diffusivity and liquid film mass transfer coefficient from a single-component adsorption uptake curve, J. Hazard. Mater., 164 (2009) 1447–1451.
  59. F. Rouquerol, J. Rouquerol, K.S.W. Sing, P. Llewellyn, G. Maurin, Adsorption by Powders and Porous Solids, Academic Press, London, 2014.