References
- S. Kumar, H.T. Kwon, K.H. Choi, J.H. Cho, W. Lim, I. Moon,
Current status and future projections of LNG demand and
supplies: a global prospective, Energy Policy, 39 (2011)
4097–4104.
- A. Salehabadi, M.F. Umar, A. Ahmad, M.I. Ahmad, M. Rafatullah,
Carbon-based nanocomposites in solid-state hydrogen energy
storage technology: an overview, Int. J. Energy Res., 1 (2020)
1–15.
- Y. Funabashi, K. Kitazawa, Fukushima in review: a complex
disaster, a disastrous response, Bull. At. Sci., 68 (2012) 9–21.
- A.A. Yaqoob, A. Khatoon, S.H.S. Mohd, K. Umar, T. Parveen,
M.N.M. Ibrahim, A. Ahmad, M. Rafatullah, Outlook on the
role of microbial fuel cells in remediation of environmental
pollutants with electricity generation, Catalysts, 10 (2020)
819–853, doi: 10.3390/catal10080819.
- A.A. Yaqoob, T. Parveen, K. Umar, M.N.M. Ibrahim, Role
of nanomaterials in the treatment of wastewater: a review,
Water, 12 (2020) 495–525, doi: 10.3390/w12020495.
- S.Z. Abbas, T.C. Whui, K. Hossain, A. Ahmad, M. Rafatullah,
Isolation and characterization of mercury resistant bacteria
from industrial wastewater, Desal. Water Treat., 138 (2019)
128–133.
- A. Ahmad, S.H. Mohd-Setapar, S.C. Chuo, A. Khatoon,
W.A. Wani, R. Kumar, M. Rafatullah, Recent advances in
new generation dye removal technologies: novel search of
approaches to reprocess waste water, RSC Adv., 5 (2015)
30801–30818.
- C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni,
A.B. Pandit, A critical review on textile wastewater treatments:
possible approaches, J. Environ. Manage., 182 (2016) 351–366.
- M.F. Umar, A. Nasar, Reduced graphene oxide/polypyrrole/
nitrate reductase deposited glassy carbon electrode (GCE/RGO/
PPy/NR): biosensor for the detection of nitrate in wastewater,
Appl. Water Sci., 8 (2018), doi: 10.1007/s13201-018-0860-1.
- Y. Wang, D. Chen, Y. Zou, Green textile materials and techniques
for water resource protection, Desal. Water Treat., 122 (2018)
195–198.
- X. Yana, B.K. Yanga, C. Hua, W. Gonga, Pollution source
positioning in a water supply network based on expensive
optimization, Desal. Water Treat., 110 (2018) 308–318.
- G. Pranjali, M. Deepa, A.B. Nair, Nanotechnology in waste
water treatment: a review, Int. J. Chem. Technol. Res., 5 (2013)
2303–2308.
- A.A. Yaqoob, M.N.M. Ibrahim, A review article of nanoparticles;
synthetic approaches and wastewater treatment methods,
Int. Res. J. Eng. Technol., 6 (2019) 1–7.
- S.K. Gunatilake, Methods of removing heavy metals from
industrial wastewater, J. Multidiscip. Eng. Sci. Stud., 1 (2015)
1–7.
- A.A. Yaqoob, A. Serrà, M.N.M. Ibrahim, Advances and
challenges in developing efficient graphene oxide-based
ZnO photocatalysts for dye photo-oxidation, Nanomaterials.,
10 (2020) 932–958, doi: 10.3390/nano10050932.
- M. Mustakeem, Electrode materials for MFCs: nanomaterial
approach, J. Renewable Sustainable Energy, 4 (2015) 1459–1467.
- A.A. Yaqoob, M.N.M. Ibrahim, M. Rafatullah, Y.S. Chua,
A. Ahmad, K. Umar, Recent advances in anodes for MFCs: an
overview, Mater, 13 (2020) 2078–2106, doi: 10.3390/ma13092078.
- W. Guo, H. Song, L. Zhou, J. Sun, Simultaneous removal
of sulfanilamide and bioelectricity generation in
two-chambered microbial fuel cells, Desal. Water Treat.,
57 (2016) 24982–24989.
- U. Schroder, F. Harnisch, L.T. Angenent, Microbial electrochemistry
and technology: terminology and classification,
Energy Environ. Sci., 8 (2015) 513–519.
- R. Nitisoravut, R. Regmi, Plant MFCs: a promising biosystems
engineering, Renewable Sustainable Energy Rev., 76 (2017) 81–89.
- R. Kumar, L. Sing, A.W. Zularisam, F.I. Hai, MFCs is emerging
as a versatile technology: a review on its possible applications,
challenges and strategies to improve the performances, Int. J.
Energy Res., 42 (2018) 369–394.
- A.L. Schneider, H. Schell, S. Hild, K.M. Mangold, A. Tiehm,
Studies into design and operation of microbial fuel cells using
oxygen gas diffusion electrodes, Desal. Water Treat., 91 (2017)
222–227.
- K.Y. Kim, W. Yang, B.E. Logan, Impact of electrode configurations
on retention time and domestic wastewater treatment efficiency
using MFCs, Water Res., 80 (2015) 41–46.
- P. Wu, Y. Wang, P. Wu, S. Lu, C. Yu, Effects of cathode materials
on H2O2 production in microbial fuel cells, Desal. Water Treat.,
153 (2019) 105–111.
- H.Y. Tsai, W.H. Hsu, Y.C. Huang, Characterization of carbon
nanotube/graphene on carbon cloth as an electrode for aircathode
MFCs, J. Nanomater., 3 (2015) 1–9.
- Y. Tao, H. Xue, L. Huang, P. Zhou, W. Yang, X. Quan, J. Yuan,
Fluorescent probe based subcellular distribution of Cu(II) ions
in living electrotrophs isolated from Cu(II)-reduced biocathodes
of MFCs, Bioresour. Technol., 255 (2017) 316–325.
- J.C. Akunna, J. O’Keeffe, R. Allan, Reviewing factors affecting
the effectiveness of decentralised domestic wastewater treatment
systems for phosphorus and pathogen removal, Desal.
Water Treat., 91 (2017) 40–47.
- E. Radzyminska-Lenarcik, K. Witt, The application of membrane
extraction in the separation of zinc and cadmium ions, Desal.
Water Treat., 128 (2018) 140–147.
- J.A. Wisniewski, S. Szerzyna, The removal of chromium ions
from water in Donnan dialysis process, Desal. Water Treat.,
128 (2018) 125–132.
- C.P.J. Isaac, A. Sivakumar, Removal of lead and cadmium
ions from water using Annona squamosa shell: kinetic and
equilibrium studies, Desal. Water Treat., 51 (2013) 7700–7709.
- A.A. Yaqoob, H. Ahmad, T. Parveen, A. Ahmad, M. Oves,
I.M. Ismail, H.A.Qari, K. Umar, M.N.M. Ibrahim, Recent
advances in metal decorated nanomaterials and their various
biological applications: a review, Front. Chem., 19 (2020)
341–363, doi: 10.3389/fchem.2020.00341.
- E.P. Zapata, R.L. Ruiz, T. Harter, A.I. Ramirez, J. Mahlknecht,
Assessment of sources and fate of nitrate in shallow groundwater
of an agricultural area by using a multi-tracer approach,
Sci. Total Environ., 470 (2014) 855–864.
- A. Bakir, I.S. O’Connor, S.J. Rowland, A.J. Hendriks,
R.C. Thompson, Relative importance of microplastics as a
pathway for the transfer of hydrophobic organic chemicals
to marine life, Environ. Pollut., 219 (2016) 56–65.
- T. Bora, J. Dutta, Applications of nanotechnology in wastewater
treatment—a review, J. Nanosci. Nanotechnol., 14 (2014)
613–626.
- D. Kolodynska, J. Bak, Biochars and their derivatives for
removal of various types of impurities from aqueous solutions,
Desal. Water Treat., 112 (2018) 42–52.
- C.M. Mehta, W.O. Khunjar, V. Nguyen, S. Tait, D.J. Batstone,
Technologies to recover nutrients from waste streams: a critical
review, Crit. Rev. Environ. Sci. Technol., 45 (2015) 385–427.
- K. Umar, A.A. Dar, M.M. Haque, N.A. Mir, M. Muneer,
Photocatalysed decolourization of two textile dye derivatives,
Martius Yellow and Acid Blue 129 in UV-irradiated aqueous
suspensions of Titania, Desal. Water Treat., 46 (2012) 205–214.
- M. Vikas, G.S. Dwarakish, Coastal pollution: a review, Aquat.
Procedia, 4 (2015) 381–388.
- K. Verma, K. Gupta, A. Gupta, A review on sewage disinfection
and need of improvement, Desal. Water Treat., 56 (2015)
2867–2871.
- D.G.J. Larsson, Pollution from drug manufacturing: review and
perspectives, Philos. Trans. R. Soc. London, Ser. B, 369 (2014)
530–571.
- R. Pal, M. Megharaj, K.P. Kirkbride, R. Naidu, Illicit drugs
and the environment—a review, Sci. Total Environ., 463 (2013)
1079–1092.
- M.I. Din, M. Iqbal, Z. Hussain, R. Khalid, Bioelectricity
generation from waste potatoes using single chambered
microbial
fuel cell, Energy Sources Part A, 31 (2020) 1–11,
doi: 10.1080/15567036.2020.1797944.
- R. Kumar, L. Sing, Z.A. Wahid, M.F.M. Din, Exoelectrogens in
MFCs toward bioelectricity generation: a review, Int. J. Energy
Res., 39 (2015) 1048–1067.
- M. Guizani, M. Saitod, R. Ito, N. Funamizu, Combined FO and
RO system for the recovery of energy from wastewater and the
desalination of seawater, Desal. Water Treat., 154 (2019) 14–20.
- K. Chandrasekhar, Effective and nonprecious cathode catalysts
for oxygen reduction reaction in MFCs, Microb. Electrochem.
Technol., 4 (2019) 485–501.
- K. Michelson, R.E. Alcalde, R.A. Sanford, A.J. Valocchi,
C.J. Werth, Diffusion-based recycling of flavins allows
Shewanella oneidensis MR-1 to yield energy from metal reduction
across physical separations, Environ. Sci. Technol., 53 (2019)
3480–3487.
- S.P. Jung, S. Pandit, Important factors influencing MFCs
performance, Microb. Electrochem. Technol., 4 (2019) 377–406.
- S.Z. Abbas, M.Rafatullah, N. Ismail, M.I. Syakir, A review on
sediment microbial fuel cells as a new source of sustainable
energy and heavy metal remediation: mechanisms and future
prospective, Int. J. Energy Res., 41 (2017)1242–1264.
- X. Hengduo, X. Leilei, Z. Shiling, Z. Yuechao, F.H. Liu, Reductive
degradation of chloramphenicol by Geobacter metallireducens,
Sci. China Technol. Sci., 1 (2019) 1–7.
- G. Anand, D. Waiger, N. Vital, J. Maman, L.J. Ma, S. Covo, How
does Fusarium oxysporum sense and respond to nicotinaldehyde,
an inhibitor of the NAD+ salvage biosynthesis pathway?, Front.
Microbiol., 10 (2019) 329–340.
- Y. Tokunou, K. Saito, R. Hasegawa, K.H. Nealson, K. Hashimoto,
H. Ishikita, Basicity of N5 in semiquinone enhances the rate
of respiratory electron outflow in Shewanella oneidensis MR-1,
bioRxiv, 1 (2019) 68–93.
- K.C. Wrighton, J.C. Thrash, R.A. Melnyk, J.P. Bigi, K.G. Byrne-
Bailey, J.P. Remis, D. Schichnes, M. Auer, C.J. Chang, J.D. Coates,
Evidence for direct electron transfer by a Gram-positive
bacterium isolated from a MFCs, Appl. Environ. Microbiol.,
77 (2011) 7633–7639.
- T. Zhang, C. Cui, S. Chen, H. Yang, P. Shen, The direct
electrocatalysis of Escherichia coli through electroactivated
excretion in MFCs, Electrochem. Commun., 10 (2008)
293–297.
- D.R. Lovley, The microbe electric: conversion of organic matter
to electricity, Curr. Opin. Biotechnol., 19 (2008) 564–571.
- S.Z. Abbas, M. Rafatullah, N. Ismail, F.R. Shakoori, Electrochemistry
and microbiology of microbial fuel cells treating
marine sediments polluted with heavy metals, RSC Adv.,
8 (2018) 18800–18813.
- M.F. Umar, S.Z. Abbas, M.N.M. Ibrahim, N. Ismail, M. Rafatullah,
Insights into advancements and electrons transfer
mechanisms of electrogens in benthic microbial fuel cells,
Membranes, 10 (2020), doi: 10.3390/membranes10090205.
- M. Rahimnejad, A.A. Ghoreyshi, G. Najafpour, T. Jafary, Power
generation from organic substrate in batch and continuous flow
MFCs operations, Appl Energy, 88 (2011) 3999–4004.
- S. Ishii, S. Suzuki, T.M. Norden-Krichmar, K.H. Nealson,
Y. Sekiguchi, Y.A. Gorby, Functionally stable and phylogenetically
diverse microbial enrichments from MFCs during
wastewater treatment, PLoS One, 7 (2012) 30–49.
- P.T. Ha, T.K. Lee, B.E. Rittmann, J. Park, I.S. Chang, Treatment
of alcohol distillery wastewater using a Bacteroidetes-dominant
thermophilic MFCs, Environ. Sci. Technol., 46 (2012) 3022–3030.
- K. Rengasamy, S. Berchmans, Simultaneous degradation of bad
wine and electricity generation with the aid of the coexisting
biocatalysts Acetobacter aceti and Gluconobacter roseus, Bioresour.
Technol., 104 (2012) 388–393.
- A. Aldrovandi, E. Marsili, L. Stante, P. Paganin, A. Giordano,
Sustainable power production in a membrane-less and
mediator-less synthetic wastewater MFCs, Bioresour. Technol.,
100 (2009) 3252–3260.
- K. Stamatelatou, G. Antonopoulou, A. Tremouli, G. Lyberatos,
Production of gaseous biofuels and electricity from cheese
whey, Ind. Eng. Chem. Res., 50 (2010) 639–644.
- B. Min, Ó.B. Román, I. Angelidaki, Importance of temperature
and anodic medium composition on MFCs performance,
Biotechnol. Lett., 30 (2008) 1213–1218.
- Y.K. Wang, G.P. Sheng, W.W. Li, Y.X. Huang, Y.Y. Yu, R.J. Zeng,
H.Q. Yu, Development of a novel bioelectrochemical membrane
reactor for wastewater treatment, Environ. Sci. Technol.,
45 (2011) 9256–9261.
- C. Abourached, M.J. English, H. Liu, Wastewater treatment by
MFCs prior irrigation water reuse, J. Cleaner Prod., 137 (2016)
144–149.
- S.B. Velasquez-Orta, I.M. Head, T.P. Curtis, K. Scott, Factors
affecting current production in MFCs using different industrial
wastewaters, Bioresour. Technol., 102 (2011) 5105–5112.
- Y. Feng, X. Wang, B.E. Logan, H. Lee, Brewery wastewater
treatment using air-cathode MFCs, Appl. Microbiol. Biotechnol.,
8 (2008) 873–880.
- N. Samsudeen, T. Radhakrishnan, M. Matheswaran, Bioelectricity
production from MFCs using mixed bacterial
culture isolated from distillery wastewater, Bioresour. Technol.,
195 (2015) 242–247.
- S.A. Patil, V.P. Surakasi, S. Koul, S. Ijmulwar, A. Vivek,
Electricity generation using chocolate industry wastewater
and its treatment in activated sludge based MFCs and analysis
of developed microbial community in the anode chamber,
Bioresour. Technol., 100 (2009) 5132–5139.
- Z. Liu, J. Liu, S. Zhang, Z. Su, Study of operational performance
and electrical response on mediator-less MFCs fed with
carbon-and protein-rich substrates, Biochem. Eng. J., 45 (2009)
185–191.
- D. Fangzhou, L. Zhenglong, Y. Shaoqiang, X. Beizhen,
L. Hong, Electricity generation directly using human feces
wastewater for life support system, Acta Astronaut., 68 (2011)
1537–1547.
- B.C. Jong, P.W.Y. Liew, M.L. Juri, B.H. Kim, A.Z.M. Dzomir,
K.W. Leo, M.R. Awang, Performance and microbial diversity of
palm oil mill effluent MFCs, Lett. Appl. Microbiol., 53 (2011)
660–667.
- J. Greenman, A. Gálvez, L. Giusti, I. Ieropoulos, Electricity from
landfill leachate using MFCs: comparison with a biological
aerated filter, Enzyme Microb. Technol., 44 (2009) 112–119.
- L. Lu, D. Xing, Z.J. Ren, Microbial community structure
accompanied with electricity production in a constructed
wetland plant MFCs, Bioresour. Technol., 195 (2015) 115–121.
- J. Dai, J.J. Wang, A.T. Chow, W.H. Conner, Electrical energy
production from forest detritus in a forested wetland using
MFCs, GCB Bioenergy, 7 (2015) 244–252.
- Y. Yuan, Q. Chen, S. Zhou, L. Zhuang, P. Hu, Improved electricity
production from sewage sludge under alkaline conditions in an
insert‐type air‐cathode MFCs, J. Chem. Technol. Biotechnol.,
87 (2012) 80–86.
- V.R. Nimje, C.Y. Chen, H.R. Chen, C.C. Chen, Y.M. Huang,
M.J. Tseng, K.C. Cheng, Y.F. Cheng, Comparative bioelectricity
production from various wastewaters in MFCs using mixed
cultures and a pure strain of Shewanella oneidensis, Bioresour.
Technol., 104 (2012) 315–323.
- G. Velvizhi, S.V. Mohan, Biocatalyst behavior under selfinduced
electrogenic microenvironment in comparison
with anaerobic treatment: evaluation with pharmaceutical
wastewater for multi-pollutant removal, Bioresour Technol.,
102 (2011) 10784–10793.
- G. Mohanakrishna, S.K. Mohan, S.V. Mohan, Carbon based
nanotubes and nanopowder as impregnated electrode
structures for enhanced power generation: evaluation with real
field wastewater, Appl. Energy, 95 (2012) 31–37.
- B. Cercado-Quezada, M.L. Delia, A. Bergel, Testing various
food-industry wastes for electricity production in MFCs,
Bioresour. Technol., 101 (2010) 2748–2754.
- A.L. Vázquez-Larios, O.S. Feria, H.M.P. Varaldo, M.T.P. Noyola,
E.R. Leal, N.R. Seijas, Bioelectricity production from municipal
leachate in a MFCs: effect of two cathodic catalysts, Int. J.
Hydrogen Energy, 39 (2014) 16667–16675.
- D.R. Lovley, Powering microbes with electricity: direct electron
transfer from electrodes to microbes, Environ. Microbiol.
Rep., 3 (2011) 27–35.
- E. Abazarian, R. Gheshlaghi, M.A. Mahdavi, The effect
of number and configuration of sediment MFCs on their
performance in an open channel architecture, J. Power Sources,
325 (2016) 739–744.
- A.A. Carmona-Martínez, F. Harnisch, U. Kuhlicke,
T.R. Neu, U. Schroder, Electron transfer and biofilm formation
of Shewanella putrefaciens as function of anode potential,
Bioelectrochemistry, 93 (2013) 23–29.
- K.P. Nevin, B.C. Kim, R.H. Glaven, J.P. Johnson, T.L. Woodard,
S.F. Covalla, A.E. Franks, A. Liu, D.R. Lovely, Anode biofilm
transcriptomics reveals outer surface components essential
for high density current production in Geobacter sulfurreducens
fuel cells, PLoS One, 4 (2009) 1–11, doi: 10.1371/journal.pone.
0005628.
- S. Kalathil, D. Pant, Nanotechnology to rescue bacterial
bidirectional extracellular electron transfer in bioelectrochemical
systems, RSC Adv., 6 (2016) 30582–30597.
- K.L. Keller, B.J. Rapp-Giles, E.S. Semkiw, I. Porat, S.D. Brown,
J.D. Wall, New model for electron flow for sulfate reduction
in Desulfovibrio alaskensis G20, Appl. Environ. Microbiol.,
80 (2014) 855–868.
- K.M. Leung, G. Wanger, M.Y. El-Naggar, Y. Gorby, G. Southam,
W.M. Lau, Shewanella oneidensis MR-1 bacterial nanowires
exhibit p-type, tunable electronic behavior, Nano Lett., 13 (2013)
2407–2411.
- W. Miran, M. Nawaz, A. Kadam, S. Shin, J. Heo, J. jang,
Microbial community structure in a dual chamber MFCs fed
with brewery waste for azo dye degradation and electricity
generation, Environ. Sci. Pollut. Res., 22 (2015) 13477–13485.
- A.Z. Alshehri, Formation of electrically conductive bacterial
nanowires by Desulfuromonas acetoxidans in MFCs reactor, Int.
J. Curr. Microbiol. Appl. Sci., 6 (2017) 1197–1211.
- C.M. Cordas, L.T. Guerra, C. Xavier, J.J.G. Moura, Electroactive
biofilms of sulphate reducing bacteria, Electrochim. Acta,
54 (2008) 29–34.
- S. Bajracharya, A.T. Heijne, X.D. Benetton, K. Vanbroekhoven,
C.J.N. Buisman, D. Pant, Carbon dioxide reduction by mixed
and pure cultures in microbial electrosynthesis using an
assembly of graphite felt and stainless steel as a cathode,
Bioresour. Technol., 195 (2015) 14–24.
- G. Pant, A. Singh, M. Panchpuri, R.G. Prasuna, K. Hossain,
S.Z. Abbas, A. Ahmad, N. Ismail, M. Rafatullah, Enhancement
of biosorption capacity of cyanobacterial strain to remediate
heavy metals, Desal. Water Treat., 165 (2019) 244–252.
- A.E. Rotaru, P.M. Shrestha, F. Liu, M. Shrestha, D. Shrestha,
K. Zengler, C. Wardman, K.P. Nevin, D.R. Lovley, A new model
for electron flow during anaerobic digestion: direct interspecies
electron transfer to Methanosaeta for the reduction of carbon
dioxide to methane, Energy Environ. Sci., 7 (2014) 408–415.
- K. Tizaoui, B. Benguella, B. Makhoukhi, Selective adsorption of
heavy metals (Co2+, Ni2+, and Cr3+) from aqueous solutions onto
natural marine clay, Desal. Water Treat., 142 (2019) 252–259.
- J. Xionga, T. Zhaoa, H. Chengb, S. Lic, S. Wangd, G. Chend, The
assessment on the heavy metal pollution and health risks in
the Liujiang River under the Xijiang River region, Desal. Water
Treat., 149 (2019) 315–322.
- A. Hashlamon, A. Ahmad, L.C. Hong, Pre-treatment methods
for seawater desalination and industrial wastewater treatment:
a brief review. Int. J. Sci. Res. Sci. Eng. Technol., 1 (2015)
422–428.
- C.S. Butler, P. Clauwaert, S.J. Green, W. Verstraete, R. Nerenberg,
Bioelectrochemical perchlorate reduction in a MFCs, Environ.
Sci. Technol., 44 (2010) 4685–4691.
- A.S. Mathuriya, J. Yakhmi, MFCs to recover heavy metals,
Environ. Chem Lett., 12 (2014) 483–494.
- Z. Li, X. Zhang, L. Lei, Electricity production during the
treatment of real electroplating wastewater containing Cr6+
using MFCs, Process Biochem., 43 (2008) 1352–1358.
- G. Wang, L. Huang, Y. Zhang, Cathodic reduction of
hexavalent chromium [Cr(VI)] coupled with electricity
generation in MFCs, Biotechnol. Lett., 30 (2008) 19–59.
- Z. He, J. Kan, F. Mansfeld, L.T. Angenent, K.H. Nealson,
Self-sustained phototrophic MFCs based on the synergistic
cooperation between photosynthetic microorganisms and
heterotrophic
bacteria, Environ. Sci. Technol., 43 (2009)
1648–1654.
- P. Singhvi, M. Chhabra, Simultaneous chromium removal and
power generation using algal biomass in a dual chambered
salt bridge MFCs, J. Bioremed. Biodegad., 4 (2013) 185–290.
- E.Y. Ryu, M. Kim, S.J. Lee, Characterization of MFCs enriched
using Cr(VI)-containing sludge, J. Microbiol. Biotechnol.,
21 (2011) 187–191.
- J.C. Varia, S.S. Martinez, S. Velasquez-Orta, S. Bull,
Microbiological influence of metal ion electrodeposition:
studies using graphite electrodes [AuCl
- − and Shewanella
putrefaciens, Electrochim. Acta, 115 (2014) 344–351.
- D. Wu, L. Huang, X. Quan, G.L. Puma, Electricity generation
and bivalent copper reduction as a function of operation time
and cathode electrode material in MFCs, J. Power Sources,
307 (2016) 705–714.
- C. Choi, Y. Cui, Recovery of silver from wastewater coupled
with power generation using a MFCs, Bioresour. Technol.,
107 (2012) 522–525.
- A.B. Holmes, F.X. Gu, Emerging nanomaterial for the applications
of selenium removal for wastewater treatment,
Environ. Sci. Nano, 3 (2016) 982–996.
- L. Huang, Y. Liu, L. Yu, X. Quan, G. Chen, A new clean
approach for production of cobalt dihydroxide from aqueous
Co(II) using oxygen-reducing biocathode MFCs, J. Cleaner
Prod., 86 (2015) 441–446.
- M. Liang, H.C. Tao, S.F. Li, W. Li, L.J. Zhang, Treatment of
Cu2+-containing wastewater by MFCs with excess sludge
as anodic substrate, Huan Jing Ke Xue Huanjing Kexue,
32 (2011) 179–185.
- C. Abourached, T. Catal, H. Liu, Efficacy of single-chamber
MFCs for removal of cadmium and zinc with simultaneous
electricity production, Water Res., 51 (2014) 228–233.
- Y. Li, Y. Wu, S. Puranik, Y. Lei, T. Vadas, B. Li, Metals as
electron acceptors in single-chamber MFCs, J. Power Sources,
269 (2014) 430–439.
- Y. Jiang, A.C. Ulrich, Y. Liu, Coupling bioelectricity generation
and oil sands tailings treatment using MFCs, Bioresour.
Technol., 139 (2013) 349–354.
- C. Choi, N. Hu, The modeling of gold recovery from
tetrachloroaurate wastewater using a MFCs, Bioresour.
Technol., 133 (2013) 589–598.
- V.M.O. Martinez, M.J.S. Garcia, A.P. de los Rios,
F.J.H. Fernandez, J.A. Egea, L.J. Lozano, Development in
MFCs, Chem. Eng. J., 271 (2015) 50–60.
- Q. Deng, X. Li, J. Zuo, A. Ling, B.E. Logan, Power generation
using an activated carbon fiber felt cathode in an upflow
MFCs, J. Power Sources, 195 (2010) 1130–1135.
- A.A. Yaqoob, K. Umar, M.N.M. Ibrahim, Silver nanoparticles:
various methods of synthesis, size affecting factors and their
potential applications–a review, Appl. Nanosci., 13 (2020)
1–10.
- A.A. Yaqoob, K. Umar, Z. Ahmad, M.N.M. Ibrahim, A. Akil,
S.A. Bhawani, Synthesis of Ag@polycarbazole nanocomposite
using ferric acetate as an oxidant, Asian J. Chem., 5 (2020)
1069–1074.
- A. Kwiecińska, M. Kochel, K. Rychlewska, J. Figa, The use
of ultrafiltration in enhancement of chemical coke oven
wastewater treatment, Desal. Water Treat., 128 (2019) 24–221.
- S.Y. Lu, M. Jin, Y. Zhang, Y.B. Niu, J.C. Gao, C.M. Li,
Chemically exfoliating biomass into a graphene‐like porous
active carbon with rational pore structure, good conductivity,
and large surface area for high‐performance supercapacitors,
Adv. Energy Mater., 8 (2018) 25–45.
- O.N. Shornikova, E.V. Kogan, N.E. Sorokina, V. V. Avdeev,
The specific surface area and porous structure of graphite
materials, Russ. J. Phys. Chem. A, 83 (2009) 1022–1025.
- S. Hussain, S. Boland, A. Baeza-Squiban, R. Hamel, Oxidative
stress and proinflammatory effects of carbon black and
titanium dioxide nanoparticles: role of particle surface area
and internalized amount, Toxicology, 260 (2009) 142–149.
- M.E. Birch, T.A. Ruda-Eberenz, M. Chai, R.L. Hatfield,
R. Andrew, Properties that influence the specific surface
areas of carbon nanotubes and nanofibers, Ann. Occup. Hyg.,
57 (2013) 1148–1166.
- X.L. Zhou, T.S. Zhao, Y.K. Zeng, L. An, L. Wei, A highly
permeable and enhanced surface area carbon-cloth electrode
for vanadium redox flow batteries, J. Power Sources,
329 (2016) 247–254.
- S.F. Zopf, M.J. Panzer, Integration of UV-cured Ionogel
electrolyte with carbon paper electrodes, AIMS Mater Sci.,
1 (2014) 59–69.
- P. Li, J.Y. Hwang, S.M. Park, Y.K. Sun, Superior lithium/
potassium storage capability of nitrogen-rich porous carbon
nanosheets derived from petroleum coke, J. Mater. Chem. A,
6 (2018) 12551–12558.
- F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini,
A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related
two-dimensional crystals, and hybrid systems for energy
conversion and storage, Science, 347 (2015) 12–46.
- K. Dž, F. Korać, S. Gutić, Graphite, graphite oxide, graphene
oxide, and reduced graphene oxide as active materials for
electrochemical double layer capacitors: a comparative study,
Bull. Chem. Technol. Bosnia Herzegovina, 45 (2015) 35–38.
- F. Zhang, T. Saito, S. Cheng, M.A. Hickner, B.E. Logan,
MFCs cathodes with poly(dimethylsiloxane) diffusion layers
constructed around stainless steel mesh current collectors,
Environ. Sci. Technol., 44 (2010) 1490–1495.
- A. Zurutuza, C. Marinelli, Challenges and opportunities in
graphene commercialization, Nat. Nanotechnol., 9 (2014)
730–749.
- F. Meng, L. Gao, Y. Yan, J. Cao, N. Wang, T. Wang, T. Ma,
Ultra-low-cost coal-based carbon electrodes with seamless
interfacial contact for effective sandwich-structured
perovskite solar cells, Carbon, 145 (2019) 290–296.
- M.F.L.D. Volder, S.H. Tawfick, R.H. Baughman,
A.J. Hart, Carbon nanotubes: present and future commercial
applications, Science, 339 (2013) 535–539.
- Y. Wang, Z. Liu, P. Hao, Investigation on mechanical and
microwave heating characteristics of asphalt mastic using
activated carbon powder as electro-magnetic absorbing
materials, Constr. Build. Mater., 202 (2019) 692–703.
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii,
Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved
synthesis of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
- Q. Wu, S. Jiao, M. Ma, S. Peng, MFCs system: a promising
technology for pollutant removal and environmental
remediation, Environ. Sci. Pollut. Res., 1 (2020) 1–6.
- R.L. Heydorn, C. Engel, R. Krull, K. Dohnt, Strategies for the
targeted improvement of anodic electron transfer in MFCs,
ChemBioEng Rev., 7 (2020) 4–17.
- V.S. Sarathi, K.S. Nahm, Recent advances and challenges
in the anode architecture and their modifications for the
applications of MFCs, Biosens. Bioelectron., 43 (2013) 461–475.
- L. Ezziat, A. Elabed, S. Ibnsouda, S. El-Abed, Challenges of
microbial fuel cell architecture on heavy metal recovery and
removal from wastewater, Front. Energy Res., 7 (2019) 1–10.
- V. Chaturvedi, P. Verma, Microbial fuel cell: a green approach
for the utilization of waste for the generation of bioelectricity,
Bioresour. Bioprocess., 3 (2016) 19–38.