References

  1. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review, Sci. Total Environ., 424 (2012) 1–10.
  2. P. Schröder, J. Navarro-Aviñó, H. Azaizeh, A.G. Goldhirsh, S. Digregorio, T. Komives, G. Langergraber, A. Lenz, E. Maestri, A.R. Memon, A. Ranalli, L. Sebastiani, S. Smrcek, T. Vanek, S. Vuilleumier, F. Wissing, Using phytoremediation technologies to upgrade waste water treatment in Europe, Paris Environ. Sci. Pollut. Res., 14 (2007) 490–497.
  3. A. Demirbas, Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review, J. Hazard. Mater., 167 (2009) 1–9.
  4. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci., 209 (2014) 172–184.
  5. A. El Nemr, O. Abdelwahab, A. El-Sikaily, A. Khaled, Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel, J. Hazard. Mater., 161 (2009) 102–110.
  6. S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review, Sustainable Mater. Technol., 9 (2016) 10–40.
  7. T. Mahmood, R. Ali, A. Naeem, M. Hamayun, M. Aslam, Potential of used Camellia sinensis leaves as precursor for activated carbon preparation by chemical activation with H3PO4; optimization using response surface methodology, Process Saf. Environ. Prot., 109 (2017) 548–563.
  8. İ. Demiral, C. Aydın Şamdan, H. Demiral, Production and characterization of activated carbons from pumpkin seed shell by chemical activation with ZnCl2, Desal. Water Treat., 57 (2016) 2446–2454.
  9. O. Pezoti, A.L. Cazetta, I.P.A.F. Souza, K.C. Bedin, A.C. Martins, T.L. Silva, V.C. Almeida, Adsorption studies of methylene blue onto ZnCl2-activated carbon produced from buriti shells (Mauritia flexuosa L.), J. Ind. Eng. Chem., 20 (2014) 4401–4407.
  10. D. Angin, Production and characterization of activated carbon from sour cherry stones by zinc chloride, Fuel, 115 (2014) 804–811.
  11. D. Angin, A. Ilci, Removal of 2,4-dichlorophenoxy acetic acid from aqueous solutions by using activated carbon derived from olive-waste cake, Desal. Water Treat., 82 (2017) 282–291.
  12. K.M. Doke, M. Yusufi, R.D. Joseph, E.M. Khan, Comparative adsorption of crystal violet and congo red onto ZnCl2 activated carbon, J. Dispersion Sci. Technol., 37 (2016) 1671–1681.
  13. Ç. Kırbıyık, A.E. Pütün, E. Pütün, Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl2 activation, Surf. Interfaces, 8 (2017) 182–192.
  14. H. Sayğili, F. Güzel, High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption, J. Cleaner Prod., 113 (2016) 995–1004.
  15. A.O. Abo El Naga, M. El Saied, S.A. Shaban, F.Y. El Kady, Fast removal of diclofenac sodium from aqueous solution using sugar cane bagasse-derived activated carbon, J. Mol. Liq., 285 (2019) 9–19.
  16. W. Russ, M. Schnappinger, In: V. Oreopoulou, W. Russ, Utilization of By-Products and Treatment of Waste in the Food Industry, Springer US, New York 2007, pp. 1–13.
  17. FAOSTAT, Crop Statistics, 2019. Available at: http://www.fao. org/faostat/en/#data/QC (accessed November 24, 2019).
  18. USDA, Citrus: World Markets and Trade, USDA Foreign Agricultural Service. Available at: https://www.fas.usda.gov/ data/citrus-world-markets-and-trade (accessed November 27, 2019).
  19. K. Rezzadori, S. Benedetti, E.R. Amante, Proposals for the residues recovery: orange waste as raw material for new products, Food Bioprod. Process., 90 (2012) 606–614.
  20. G. Demir, D. Angın, Effect of Activation Temperature on Properties of Activated Carbon from Orange Peel by Zinc Chloride, THERMAM 2014 and 3rd Rostocker Symposium on Thermophysical Properties for Technical Thermodynamics, 2014, pp. 101–106.
  21. T.E. Bektas, D. Angin, S. Gunes, Production and characterization of activated carbon prepared from orange pulp and utilization for the removal of phosphate ions, Fresenius Environ. Bull., 27 (2018) 7973–7982.
  22. S. Yorgun, N. Vural, H. Demiral, Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation, Microporous Mesoporous Mater., 122 (2009) 189–194.
  23. C. Patra, R.M.N. Medisetti, K. Pakshirajan, S. Narayanasamy, Assessment of raw, acid-modified and chelated biomass for sequestration of hexavalent chromium from aqueous solution using Sterculia villosa Roxb. shells, Environ. Sci. Pollut. Res., 26 (2019) 23625–23637.
  24. D. Angın, Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions, Bioresour. Technol., 168 (2014) 259–266.
  25. S. Kumar, S. Narayanasamy, R.P. Venkatesh, Removal of Cr(VI) from synthetic solutions using water caltrop shell as a low-cost biosorbent, Sep. Sci. Technol., 54 (2019) 2783–2799.
  26. M.E. Fernandez, G.V. Nunell, P.R. Bonelli, A.L. Cukierman, Activated carbon developed from orange peels: batch and dynamic competitive adsorption of basic dyes, Ind. Crops Prod., 62 (2014) 437–445.
  27. M.B. Desta, Batch sorption experiments: langmuir and freundlich isotherm studies for the adsorption of textile metal ions onto teff straw (Eragrostis tef) agricultural waste, J. Thermodyn., 2013 (2013) 1–6.
  28. A. Khaled, A. El Nemr, A. El-Sikaily, O. Abdelwahab, Removal of direct N blue-106 from artificial textile dye effluent using activated carbon from orange peel: adsorption isotherm and kinetic studies, J. Hazard. Mater., 165 (2009) 100–110.
  29. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  30. H. Freundlich, Über die adsorption in Lösungen, Z. Phys. Chem., 57 (1907) 385–470.
  31. M.M. Dubinin, L.V. Radushkevich, Equation of the characteristics curve of activated charcoal, Chem. Zentralbl., 1 (1947) 875–890.
  32. M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Physicochim. Sin., 12 (1940) 217–222.
  33. A.M. Aljeboree, A.N. Alshirifi, A.F. Alkaim, Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon, Arabian J. Chem., 10 (2017) S3381–S3393.
  34. Y.-S. Ho, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics, 59 (2004) 171–177.
  35. Y.-S. Ho, Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods, Water Res., 40 (2006) 119–125.
  36. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanitary Eng. Div., 89 (1963) 31–60.
  37. M.J.D. Low, Kinetics of chemisorption of gases on solids, Chem. Rev., 60 (1960) 267–312.
  38. A. Ajmani, T. Shahnaz, S. Narayanan, S. Narayanasamy, Equilibrium, kinetics and thermodynamics of hexavalent chromium biosorption on pristine and zinc chloride activated Senna siamea seed pods, Chem. Ecol., 35 (2019) 379–396.
  39. M. Kilic, E. Apaydin-Varol, A.E. Pütün, Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: equilibrium, kinetics and thermodynamics, J. Hazard. Mater., 189 (2011) 397–403.
  40. F. Kaouah, S. Boumaza, T. Berrama, M. Trari, Z. Bendjama, Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46, J. Cleaner Prod., 54 (2013) 296–306.
  41. D. Das, D. P. Samal, M. BC, Preparation of activated carbon from green coconut shell and its characterization, J. Chem. Eng. Process Technol., 6 (2015) 1–7.
  42. Z. Wang, F. Cuib, Y. Pana, L. Houa, B. Zhanga, Y. Lib, L. Zhu., Hierarchically micro-mesoporous β-cyclodextrin polymers used for ultrafast removal of micropollutants from water, Carbohydr. Polym., 213 (2019) 352–360.
  43. J. Saleem, U. Bin Shahid, M. Hijab, H. Mackey, G. McKay, Production and applications of activated carbons as adsorbents from olive stones, Biomass Convers. Biorefin., 9 (2019) 775–802.
  44. S. Karmaker, M.N. Uddin, H. Ichikawa, Y. Fukumori, T.K. Saha, Adsorption of reactive orange 13 onto jackfruit seed flakes in aqueous solution, J. Environ. Chem. Eng., 3 (2015) 583–592.
  45. R. Malik, D.S. Ramteke, S.R. Wate, Adsorption of malachite green on groundnut shell waste based powdered activated carbon, Waste Manag., 27 (2007) 1129–1138.
  46. J. Ndi Nsami, J. Ketcha Mbadcam, The adsorption efficiency of chemically prepared activated carbon from cola nut shells by ZnCl2 on methylene blue, J. Chem., 2013 (2013) 1–7.
  47. V.K.K. Saravanan, C.P.B. Ushadevi, S.V.N. Selvaraju, Biosorption of Acid Yellow 12 from simulated wastewater by non‑viable T. harzianum: kinetics, isotherm and thermodynamic studies, Int. J. Environ. Sci. Technol., 16 (2019) 6895–6906.
  48. K.L. Chiu, D.H.L. Ng, Synthesis and characterization of cottonmade activated carbon fiber and its adsorption of methylene blue in water treatment, Biomass Bioenergy, 46 (2012) 102–110.
  49. S.N. Milmile, J.V. Pande, S. Karmakar, A. Bansiwal, T. Chakrabarti, R.B. Biniwale, Equilibrium isotherm and kinetic modeling of the adsorption of nitrates by anion exchange Indion NSSR resin, Desalination, 276 (2011) 38–44.
  50. D. Angın, T.E. Köse, U. Selengil, Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff, Appl. Surf. Sci., 280 (2013) 705–710.
  51. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  52. M.D.G. de Luna, E.D. Flores, D.A.D. Genuino, C.M. Futalan, M.W. Wan, Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hulls-Optimization, isotherm and kinetic studies, J. Taiwan Inst. Chem. Eng., 44 (2013) 646–653.
  53. M. Arami, N.Y. Limaee, N.M. Mahmoodi, Evaluation of the adsorption kinetics and equilibrium for the potential removal of acid dyes using a biosorbent, Chem. Eng. J., 139 (2008) 2–10.
  54. S. Chen, J. Zhang, C. Zhang, Q. Yue, Y. Li, C. Li, Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis, Desalination, 252 (2010) 149–156.
  55. Z. Ayazi, Z.M. Khoshhesab, F.F. Azhar, Z. Mohajeri, Modeling and optimization of adsorption removal of reactive Orange 13 on the alginate–montmorillonite–polyaniline nanocomposite via response surface methodology, J. Chin. Chem. Soc., 64 (2017) 627–639.
  56. R. Zandipak, S. Sobhanardakani, Evaluation of kinetic and equilibrium parameters of NiFe2O4 nanoparticles on adsorption of reactive Orange Dye from water, Iran. J. Toxicol., 10 (2016) 51–58.
  57. C. Patra, T. Shahnaz, S. Subbiah, S. Narayanasamy, Comparative assessment of raw and acid-activated preparations of novel Pongamia pinnata shells for adsorption of hexavalent chromium from simulated wastewater, Environ. Sci. Pollut. Res., 27 (2020) 14836–14851.
  58. T. Calvete, E.C. Lima, N.F. Cardoso, J.C.P. Vaghetti, S.L.P. Dias, F.A. Pavan, Application of carbon adsorbents prepared from Brazilian-pine fruit shell for the removal of reactive orange 16 from aqueous solution: kinetic, equilibrium, and thermodynamic studies, J. Environ. Manage., 91 (2010) 1695–1706.
  59. T. Maneerung, J. Liew, Y. Dai, S. Kawi, C. Chong, C.-H. Wang, Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: kinetics, isotherms and thermodynamic studies, Bioresour. Technol., 200 (2016) 350–359.
  60. S. Pap, T. Šolević Knudsen, J. Radonić, S. Maletić, S.M. Igić, M. Turk Sekulić, Utilization of fruit processing industry waste as green activated carbon for the treatment of heavy metals and chlorophenols contaminated water, J. Cleaner Prod., 162 (2017) 958–972.