References
- P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao,
C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide
nanomaterials in wastewater treatment: a review, Sci. Total
Environ., 424 (2012) 1–10.
- P. Schröder, J. Navarro-Aviñó, H. Azaizeh, A.G. Goldhirsh,
S. Digregorio, T. Komives, G. Langergraber, A. Lenz,
E. Maestri, A.R. Memon, A. Ranalli, L. Sebastiani, S. Smrcek,
T. Vanek, S. Vuilleumier, F. Wissing, Using phytoremediation
technologies to upgrade waste water treatment in Europe, Paris
Environ. Sci. Pollut. Res., 14 (2007) 490–497.
- A. Demirbas, Agricultural based activated carbons for the
removal of dyes from aqueous solutions: a review, J. Hazard.
Mater., 167 (2009) 1–9.
- M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal
from aqueous solution by adsorption: a review, Adv. Colloid
Interface Sci., 209 (2014) 172–184.
- A. El Nemr, O. Abdelwahab, A. El-Sikaily, A. Khaled, Removal
of direct blue-86 from aqueous solution by new activated
carbon developed from orange peel, J. Hazard. Mater.,
161 (2009) 102–110.
- S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics
and adsorption capacities of low-cost sorbents for wastewater
treatment: a review, Sustainable Mater. Technol., 9 (2016) 10–40.
- T. Mahmood, R. Ali, A. Naeem, M. Hamayun, M. Aslam,
Potential of used Camellia sinensis leaves as precursor for
activated carbon preparation by chemical activation with
H3PO4; optimization using response surface methodology,
Process Saf. Environ. Prot., 109 (2017) 548–563.
- İ. Demiral, C. Aydın Şamdan, H. Demiral, Production and
characterization of activated carbons from pumpkin seed shell
by chemical activation with ZnCl2, Desal. Water Treat., 57 (2016)
2446–2454.
- O. Pezoti, A.L. Cazetta, I.P.A.F. Souza, K.C. Bedin, A.C. Martins,
T.L. Silva, V.C. Almeida, Adsorption studies of methylene
blue onto ZnCl2-activated carbon produced from buriti shells
(Mauritia flexuosa L.), J. Ind. Eng. Chem., 20 (2014) 4401–4407.
- D. Angin, Production and characterization of activated carbon
from sour cherry stones by zinc chloride, Fuel, 115 (2014)
804–811.
- D. Angin, A. Ilci, Removal of 2,4-dichlorophenoxy acetic acid
from aqueous solutions by using activated carbon derived
from olive-waste cake, Desal. Water Treat., 82 (2017) 282–291.
- K.M. Doke, M. Yusufi, R.D. Joseph, E.M. Khan, Comparative
adsorption of crystal violet and congo red onto ZnCl2 activated
carbon, J. Dispersion Sci. Technol., 37 (2016) 1671–1681.
- Ç. Kırbıyık, A.E. Pütün, E. Pütün, Equilibrium, kinetic, and
thermodynamic studies of the adsorption of Fe(III) metal
ions and 2,4-dichlorophenoxyacetic acid onto biomass-based
activated carbon by ZnCl2 activation, Surf. Interfaces, 8 (2017)
182–192.
- H. Sayğili, F. Güzel, High surface area mesoporous activated
carbon from tomato processing solid waste by zinc chloride
activation: process optimization, characterization and dyes
adsorption, J. Cleaner Prod., 113 (2016) 995–1004.
- A.O. Abo El Naga, M. El Saied, S.A. Shaban, F.Y. El Kady, Fast
removal of diclofenac sodium from aqueous solution using
sugar cane bagasse-derived activated carbon, J. Mol. Liq.,
285 (2019) 9–19.
- W. Russ, M. Schnappinger, In: V. Oreopoulou, W. Russ,
Utilization of By-Products and Treatment of Waste in the Food
Industry, Springer US, New York 2007, pp. 1–13.
- FAOSTAT, Crop Statistics, 2019. Available at: http://www.fao.
org/faostat/en/#data/QC (accessed November 24, 2019).
- USDA, Citrus: World Markets and Trade, USDA Foreign
Agricultural Service. Available at: https://www.fas.usda.gov/
data/citrus-world-markets-and-trade (accessed November 27,
2019).
- K. Rezzadori, S. Benedetti, E.R. Amante, Proposals for the
residues recovery: orange waste as raw material for new
products, Food Bioprod. Process., 90 (2012) 606–614.
- G. Demir, D. Angın, Effect of Activation Temperature on
Properties of Activated Carbon from Orange Peel by Zinc
Chloride, THERMAM 2014 and 3rd Rostocker Symposium on
Thermophysical Properties for Technical Thermodynamics,
2014, pp. 101–106.
- T.E. Bektas, D. Angin, S. Gunes, Production and characterization
of activated carbon prepared from orange pulp and utilization
for the removal of phosphate ions, Fresenius Environ. Bull.,
27 (2018) 7973–7982.
- S. Yorgun, N. Vural, H. Demiral, Preparation of high-surface area
activated carbons from Paulownia wood by ZnCl2 activation,
Microporous Mesoporous Mater., 122 (2009) 189–194.
- C. Patra, R.M.N. Medisetti, K. Pakshirajan, S. Narayanasamy,
Assessment of raw, acid-modified and chelated biomass for
sequestration of hexavalent chromium from aqueous solution
using Sterculia villosa Roxb. shells, Environ. Sci. Pollut. Res.,
26 (2019) 23625–23637.
- D. Angın, Utilization of activated carbon produced from fruit
juice industry solid waste for the adsorption of Yellow 18
from aqueous solutions, Bioresour. Technol., 168 (2014) 259–266.
- S. Kumar, S. Narayanasamy, R.P. Venkatesh, Removal of
Cr(VI) from synthetic solutions using water caltrop shell as a
low-cost biosorbent, Sep. Sci. Technol., 54 (2019) 2783–2799.
- M.E. Fernandez, G.V. Nunell, P.R. Bonelli, A.L. Cukierman,
Activated carbon developed from orange peels: batch and
dynamic competitive adsorption of basic dyes, Ind. Crops
Prod., 62 (2014) 437–445.
- M.B. Desta, Batch sorption experiments: langmuir and
freundlich isotherm studies for the adsorption of textile
metal ions onto teff straw (Eragrostis tef) agricultural waste,
J. Thermodyn., 2013 (2013) 1–6.
- A. Khaled, A. El Nemr, A. El-Sikaily, O. Abdelwahab, Removal
of direct N blue-106 from artificial textile dye effluent using
activated carbon from orange peel: adsorption isotherm and
kinetic studies, J. Hazard. Mater., 165 (2009) 100–110.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- H. Freundlich, Über die adsorption in Lösungen, Z. Phys.
Chem., 57 (1907) 385–470.
- M.M. Dubinin, L.V. Radushkevich, Equation of the
characteristics curve of activated charcoal, Chem. Zentralbl.,
1 (1947) 875–890.
- M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir
isotherms, Acta Physicochim. Sin., 12 (1940) 217–222.
- A.M. Aljeboree, A.N. Alshirifi, A.F. Alkaim, Kinetics and
equilibrium study for the adsorption of textile dyes on coconut
shell activated carbon, Arabian J. Chem., 10 (2017) S3381–S3393.
- Y.-S. Ho, Citation review of Lagergren kinetic rate equation
on adsorption reactions, Scientometrics, 59 (2004) 171–177.
- Y.-S. Ho, Second-order kinetic model for the sorption of
cadmium onto tree fern: a comparison of linear and non-linear
methods, Water Res., 40 (2006) 119–125.
- W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon
from solution, J. Sanitary Eng. Div., 89 (1963) 31–60.
- M.J.D. Low, Kinetics of chemisorption of gases on solids,
Chem. Rev., 60 (1960) 267–312.
- A. Ajmani, T. Shahnaz, S. Narayanan, S. Narayanasamy,
Equilibrium, kinetics and thermodynamics of hexavalent
chromium biosorption on pristine and zinc chloride activated
Senna siamea seed pods, Chem. Ecol., 35 (2019) 379–396.
- M. Kilic, E. Apaydin-Varol, A.E. Pütün, Adsorptive removal
of phenol from aqueous solutions on activated carbon
prepared from tobacco residues: equilibrium, kinetics and
thermodynamics, J. Hazard. Mater., 189 (2011) 397–403.
- F. Kaouah, S. Boumaza, T. Berrama, M. Trari, Z. Bendjama,
Preparation and characterization of activated carbon from wild
olive cores (oleaster) by H3PO4 for the removal of Basic Red 46,
J. Cleaner Prod., 54 (2013) 296–306.
- D. Das, D. P. Samal, M. BC, Preparation of activated carbon
from green coconut shell and its characterization, J. Chem.
Eng. Process Technol., 6 (2015) 1–7.
- Z. Wang, F. Cuib, Y. Pana, L. Houa, B. Zhanga, Y. Lib, L. Zhu.,
Hierarchically micro-mesoporous β-cyclodextrin polymers
used for ultrafast removal of micropollutants from water,
Carbohydr. Polym., 213 (2019) 352–360.
- J. Saleem, U. Bin Shahid, M. Hijab, H. Mackey, G. McKay,
Production and applications of activated carbons as adsorbents
from olive stones, Biomass Convers. Biorefin., 9 (2019) 775–802.
- S. Karmaker, M.N. Uddin, H. Ichikawa, Y. Fukumori, T.K. Saha,
Adsorption of reactive orange 13 onto jackfruit seed flakes in
aqueous solution, J. Environ. Chem. Eng., 3 (2015) 583–592.
- R. Malik, D.S. Ramteke, S.R. Wate, Adsorption of malachite
green on groundnut shell waste based powdered activated
carbon, Waste Manag., 27 (2007) 1129–1138.
- J. Ndi Nsami, J. Ketcha Mbadcam, The adsorption efficiency of
chemically prepared activated carbon from cola nut shells by
ZnCl2 on methylene blue, J. Chem., 2013 (2013) 1–7.
- V.K.K. Saravanan, C.P.B. Ushadevi, S.V.N. Selvaraju, Biosorption
of Acid Yellow 12 from simulated wastewater by non‑viable
T. harzianum: kinetics, isotherm and thermodynamic studies,
Int. J. Environ. Sci. Technol., 16 (2019) 6895–6906.
- K.L. Chiu, D.H.L. Ng, Synthesis and characterization of cottonmade
activated carbon fiber and its adsorption of methylene
blue in water treatment, Biomass Bioenergy, 46 (2012) 102–110.
- S.N. Milmile, J.V. Pande, S. Karmakar, A. Bansiwal,
T. Chakrabarti, R.B. Biniwale, Equilibrium isotherm and kinetic
modeling of the adsorption of nitrates by anion exchange
Indion NSSR resin, Desalination, 276 (2011) 38–44.
- D. Angın, T.E. Köse, U. Selengil, Production and characterization
of activated carbon prepared from safflower seed cake
biochar and its ability to absorb reactive dyestuff, Appl. Surf.
Sci., 280 (2013) 705–710.
- K.Y. Foo, B.H. Hameed, Insights into the modeling of
adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
- M.D.G. de Luna, E.D. Flores, D.A.D. Genuino, C.M. Futalan,
M.W. Wan, Adsorption of Eriochrome Black T (EBT) dye using
activated carbon prepared from waste rice hulls-Optimization,
isotherm and kinetic studies, J. Taiwan Inst. Chem. Eng.,
44 (2013) 646–653.
- M. Arami, N.Y. Limaee, N.M. Mahmoodi, Evaluation of the
adsorption kinetics and equilibrium for the potential removal
of acid dyes using a biosorbent, Chem. Eng. J., 139 (2008) 2–10.
- S. Chen, J. Zhang, C. Zhang, Q. Yue, Y. Li, C. Li, Equilibrium and
kinetic studies of methyl orange and methyl violet adsorption
on activated carbon derived from Phragmites australis,
Desalination, 252 (2010) 149–156.
- Z. Ayazi, Z.M. Khoshhesab, F.F. Azhar, Z. Mohajeri, Modeling
and optimization of adsorption removal of reactive Orange
13 on the alginate–montmorillonite–polyaniline nanocomposite
via response surface methodology, J. Chin. Chem. Soc., 64 (2017)
627–639.
- R. Zandipak, S. Sobhanardakani, Evaluation of kinetic and
equilibrium parameters of NiFe2O4 nanoparticles on adsorption
of reactive Orange Dye from water, Iran. J. Toxicol., 10 (2016)
51–58.
- C. Patra, T. Shahnaz, S. Subbiah, S. Narayanasamy, Comparative
assessment of raw and acid-activated preparations of novel
Pongamia pinnata shells for adsorption of hexavalent chromium
from simulated wastewater, Environ. Sci. Pollut. Res., 27 (2020)
14836–14851.
- T. Calvete, E.C. Lima, N.F. Cardoso, J.C.P. Vaghetti,
S.L.P. Dias, F.A. Pavan, Application of carbon adsorbents
prepared from Brazilian-pine fruit shell for the removal of
reactive orange 16 from aqueous solution: kinetic, equilibrium,
and thermodynamic studies, J. Environ. Manage., 91 (2010)
1695–1706.
- T. Maneerung, J. Liew, Y. Dai, S. Kawi, C. Chong, C.-H. Wang,
Activated carbon derived from carbon residue from biomass
gasification and its application for dye adsorption: kinetics,
isotherms and thermodynamic studies, Bioresour. Technol.,
200 (2016) 350–359.
- S. Pap, T. Šolević Knudsen, J. Radonić, S. Maletić, S.M. Igić,
M. Turk Sekulić, Utilization of fruit processing industry waste
as green activated carbon for the treatment of heavy metals
and chlorophenols contaminated water, J. Cleaner Prod.,
162 (2017) 958–972.