References
- P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation:
a review/state of the art, Ind. Eng. Chem. Res., 48 (2009)
4638–4663.
- R.W. Baker, K. Lokhandwala, Natural gas processing with
membranes: an overview, Ind. Eng. Chem. Res., 47 (2008)
2109–2121.
- J. Potreck, K. Nijmeijer, T. Kosinski, M. Wessling, Mixed water
vapor/gas transport through the rubbery polymer PEBAX®
1074, J. Membr. Sci., 338 (2009) 11–16.
- V.I. Bondar, B.D. Freeman, I. Pinnau, Gas transport properties
of poly(ether‐b‐amide) segmented block copolymers, J. Polym.
Sci., Part B: Polym. Phys., 38 (2000) 2051–2062.
- M. Szwast, A. Makaruk, M. Harasek, Gas separation membranes
made of PEBA block copolymer, Archit. Civ. Eng. Environ.,
5 (2012) 107–111.
- J.C. Chen, X.S. Feng, A. Penlidis, Gas permeation through
poly(ether‐b‐amide) (PEBAX® 2533) block copolymer membranes,
Sep. Sci. Technol., 39 (2005) 149–164.
- K.H. Kim, P.G. Ingole, J.H. Kim, H.K. Lee, Separation
performance of PEBAX®/PEI hollow fiber composite membrane
for SO2/CO2/N2 mixed gas, Chem. Eng. J., 233 (2013) 242–250.
- M. Szwast, D. Polak, M. Zalewski, Novel gas separation
membrane for energy industry, Desal. Water Treat., 64 (2017)
255–259.
- B.D. Freeman, Basis of permeability/selectivity tradeoff relations
in polymeric gas separation membranes, Macromolecules,
32 (1999) 375–380.
- L.M. Robeson, Correlation of separation factor versus
permeability for polymeric membranes, J. Membr. Sci., 62 (1991)
165–185.
- C.M. Zimmerman, A. Singh, W.J. Koros, Tailoring mixed matrix
composite membranes for gas separations, J. Membr. Sci.,
137 (1997) 145–154.
- Y.S. Li, F.Y. Liang, H. Bux, W.S. Yang, J. Caro, Zeolitic
imidazolate framework ZIF-7 based molecular sieve
membrane for hydrogen separation, J. Membr. Sci., 354 (2010)
48–54.
- S. Shahid, K. Nijmeijer, S. Nehache, I. Vankelecom, A. Deratani,
D. Quemener, MOF-mixed matrix membranes: precise
dispersion of MOF particles with better compatibility via a
particle fusion approach for enhanced gas separation properties,
J. Membr. Sci., 492 (2015) 21–31.
- B. Seoane, J. Coronas, I. Gascon, M.E. Benavides, O. Karvan,
J. Caro, F. Kapteijn, J. Gascon, Metal–organic framework
based mixed matrix membranes: a solution for highly efficient
CO2 capture?, Chem. Soc. Rev., 44 (2015) 2421–2454.
- T.-H. Bae, J.S. Lee, W. Qiu, W.J. Koros, C.W. Jones, S. Nair,
A high‐performance gas‐separation membrane containing
submicrometer‐sized metal–organic framework crystals, Angew.
Chem. Int. Ed., 49 (2010) 9863–9866.
- Y. Hu, Z.X. Liu, J. Xu, Y. Huang, Y. Song, Evidence of pressure
enhanced CO2 storage in ZIF-8 probed by FTIR spectroscopy,
J. Am. Chem. Soc., 135 (2013) 9287–9290.
- X. Gong, Y.J. Wang, T.R. Kuang, ZIF-8-based membranes
for carbon dioxide capture and separation, ACS Sustainable
Chem. Eng., 5 (2017) 11204–11214.
- M.A. Aroon, A.F. Ismail, T. Matsuura, M.M. Montazer-Rahmati,
Performance studies of mixed matrix membranes for gas
separation: a review, Sep. Purif. Technol., 75 (2010) 229–242.
- T.T. Moore, W.J. Koros, Non-ideal effects in organic–inorganic
materials for gas separation membranes, J. Mol. Struct.,
739 (2005) 87–98.
- G.X. Dong, H.Y. Li, V. Chen, Challenges and opportunities
for mixed-matrix membranes for gas separation, J. Mater.
Chem. A, 1 (2013) 4610–4630.
- G.-L. Zhuang, H.-H. Tseng, P. Uchytil, M.-Y. Wey, Enhancing
the CO2 plasticization resistance of PS mixed-matrix membrane
by blunt zeolitic imidazolate framework, J. CO2 Util., 25 (2018)
79–88.
- X.-K. Ma, N.-H. Lee, H.-J. Oh, J.-W. Kim, C.-K. Rhee, K.-S. Park,
S.-J. Kim, Surface modification and characterization of highly
dispersed silica nanoparticles by a cationic surfactant, Colloids
Surf., A, 358 (2010) 172–176.
- X.Y. Gong, J. Liu, S. Baskaran, R.D. Voise, J.S. Young, Surfactantassisted
processing of carbon nanotube/polymer composites,
Chem. Mater., 12 (2000) 1049–1052.
- Y.-J. Wan, L.-C. Tang, D. Yan, L. Zhao, Y.-B. Li, L.-B. Wu,
J.-X. Jiang, G.-Q. Lai, Improved dispersion and interface in
the graphene/epoxy composites via a facile surfactant-assisted
process, Compos. Sci. Technol., 82 (2013) 60–68.
- Sh. Saedi, S.S. Madaeni, A.A. Shamsabadi, F. Mottaghi,
The effect of surfactants on the structure and performance of
PES membrane for separation of carbon dioxide from methane,
Sep. Purif. Technol., 99 (2012) 104–119.
- Y.F. Li, X.Q. Li, H. Wu, Q.P. Xin, S.F. Wang, Y. Liu, Z.Z. Tian,
T.T. Zhou, Z.Y. Jiang, H.W. Tian, X.Z. Cao, B.Y. Wang, Anionic
surfactant-doped PEBAX® membrane with optimal free volume
characteristics for efficient CO2 separation, J. Membr. Sci.,
493 (2015) 460–469.
- P.S. Goh, A.F. Ismail, S.M. Sanip, B.C. Ng, M. Aziz, Recent
advances of inorganic fillers in mixed matrix membrane for gas
separation. Sep. Purif. Technol., 81 (2011) 243–264.
- N.A.H.M. Nordin, S.M. Racha, T. Matsuura, N. Misdan,
N.A.A. Sani, A.F. Ismail, A. Mustafa, Facile modification
of ZIF-8 mixed matrix membrane for CO2/CH4 separation:
synthesis and preparation, RSC Adv., 5 (2015) 43110–43120.
- Sigma-Aldrich ZIF-8 Data Sheet.
- Sigma-Aldrich Pluronic P123 Data Sheet.
- H.L. Frisch, The time lag in diffusion, J. Phys. Chem., 61 (1957)
1, 93–95.
- M. Szwast, D. Polak, B. Marcjaniak, The influence of temperature
and pressure of the feed on physical and chemical parameters
of the membrane made of PEBA copolymer, Desal. Water Treat.,
128 (2018) 193–198.
- J.G. Wijmans, R.W. Baker, The solution-diffusion model:
a review, J. Membr. Sci., 107 (1995) 1–21.
- M.S.A. Wahab, A.R. Sunarti, Development of PEBAX® based
membrane for gas separation: a review, Int. J. Membr. Sci.
Technol., 2 (2015) 79.
- F. Gao, Y.K. Li, Z.J. Bian, J. Hu, H.L. Liu, Dynamic hydrophobic
hindrance effect of zeolite@zeolitic imidazolate framework
composites for CO2 capture in the presence of water, J. Mater.
Chem. A, 3 (2015) 8091–8097.
- K.G. Grigorov, I.C. Oliveira, H.S. Maciel, M. Massi, M.S. Oliveira
Jr., J. Amorim, C.A. Cunha, Optical and morphological
properties of N-doped TiO2 thin films, Surf. Sci., 605 (2011)
775–782.
- Y.-Q. Wang, Y.-L. Su, Q. Sun, X.-L. Ma, Z.-Y. Jiang, Generation
of anti-biofouling ultrafiltration membrane surface by blending
novel branched amphiphilic polymers with polyethersulfone,
J. Membr. Sci., 286 (2006) 228–236.
- S.Y. Hwang, W.S. Chi, S.J. Lee, S.H. Im, J.H. Kim, J.S. Kim,
Hollow ZIF-8 nanoparticles improve the permeability of mixed
matrix membranes for CO2/CH4 gas separation, J. Membr.
Sci., 480 (2015) 11–19.
- L.S. Lai, Y.F. Yeong, K.K. Lau, M.S. Azmi, Zeolite imidazole
frameworks membranes for CO2/CH4 separation from natural
gas: a review, J. Appl. Sci., 14 (2014) 1161.
- K.C. Tam, E. Wyn-Jones, Insights on polymer surfactant complex
structures during the binding of surfactants to polymers as
measured by equilibrium and structural techniques, Chem. Soc.
Rev., 35 (2006) 693–709.
- M.W. Sulek, J. Janiszewska, K. Kurzepa, B. Mirkowska,
The effect of anionic surfactant – polyvinylpyrrolidone
complexes formed in aqueous solutions on physicochemical
and functional properties of shampoos, Polimery, 5 (2018)
117–122.