References

  1. P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: a review/state of the art, Ind. Eng. Chem. Res., 48 (2009) 4638–4663.
  2. R.W. Baker, K. Lokhandwala, Natural gas processing with membranes: an overview, Ind. Eng. Chem. Res., 47 (2008) 2109–2121.
  3. J. Potreck, K. Nijmeijer, T. Kosinski, M. Wessling, Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074, J. Membr. Sci., 338 (2009) 11–16.
  4. V.I. Bondar, B.D. Freeman, I. Pinnau, Gas transport properties of poly(ether‐b‐amide) segmented block copolymers, J. Polym. Sci., Part B: Polym. Phys., 38 (2000) 2051–2062.
  5. M. Szwast, A. Makaruk, M. Harasek, Gas separation membranes made of PEBA block copolymer, Archit. Civ. Eng. Environ., 5 (2012) 107–111.
  6. J.C. Chen, X.S. Feng, A. Penlidis, Gas permeation through poly(ether‐b‐amide) (PEBAX® 2533) block copolymer membranes, Sep. Sci. Technol., 39 (2005) 149–164.
  7. K.H. Kim, P.G. Ingole, J.H. Kim, H.K. Lee, Separation performance of PEBAX®/PEI hollow fiber composite membrane for SO2/CO2/N2 mixed gas, Chem. Eng. J., 233 (2013) 242–250.
  8. M. Szwast, D. Polak, M. Zalewski, Novel gas separation membrane for energy industry, Desal. Water Treat., 64 (2017) 255–259.
  9. B.D. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules, 32 (1999) 375–380.
  10. L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci., 62 (1991) 165–185.
  11. C.M. Zimmerman, A. Singh, W.J. Koros, Tailoring mixed matrix composite membranes for gas separations, J. Membr. Sci., 137 (1997) 145–154.
  12. Y.S. Li, F.Y. Liang, H. Bux, W.S. Yang, J. Caro, Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation, J. Membr. Sci., 354 (2010) 48–54.
  13. S. Shahid, K. Nijmeijer, S. Nehache, I. Vankelecom, A. Deratani, D. Quemener, MOF-mixed matrix membranes: precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties, J. Membr. Sci., 492 (2015) 21–31.
  14. B. Seoane, J. Coronas, I. Gascon, M.E. Benavides, O. Karvan, J. Caro, F. Kapteijn, J. Gascon, Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?, Chem. Soc. Rev., 44 (2015) 2421–2454.
  15. T.-H. Bae, J.S. Lee, W. Qiu, W.J. Koros, C.W. Jones, S. Nair, A high‐performance gas‐separation membrane containing submicrometer‐sized metal–organic framework crystals, Angew. Chem. Int. Ed., 49 (2010) 9863–9866.
  16. Y. Hu, Z.X. Liu, J. Xu, Y. Huang, Y. Song, Evidence of pressure enhanced CO2 storage in ZIF-8 probed by FTIR spectroscopy, J. Am. Chem. Soc., 135 (2013) 9287–9290.
  17. X. Gong, Y.J. Wang, T.R. Kuang, ZIF-8-based membranes for carbon dioxide capture and separation, ACS Sustainable Chem. Eng., 5 (2017) 11204–11214.
  18. M.A. Aroon, A.F. Ismail, T. Matsuura, M.M. Montazer-Rahmati, Performance studies of mixed matrix membranes for gas separation: a review, Sep. Purif. Technol., 75 (2010) 229–242.
  19. T.T. Moore, W.J. Koros, Non-ideal effects in organic–inorganic materials for gas separation membranes, J. Mol. Struct., 739 (2005) 87–98.
  20. G.X. Dong, H.Y. Li, V. Chen, Challenges and opportunities for mixed-matrix membranes for gas separation, J. Mater. Chem. A, 1 (2013) 4610–4630.
  21. G.-L. Zhuang, H.-H. Tseng, P. Uchytil, M.-Y. Wey, Enhancing the CO2 plasticization resistance of PS mixed-matrix membrane by blunt zeolitic imidazolate framework, J. CO2 Util., 25 (2018) 79–88.
  22. X.-K. Ma, N.-H. Lee, H.-J. Oh, J.-W. Kim, C.-K. Rhee, K.-S. Park, S.-J. Kim, Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant, Colloids Surf., A, 358 (2010) 172–176.
  23. X.Y. Gong, J. Liu, S. Baskaran, R.D. Voise, J.S. Young, Surfactantassisted processing of carbon nanotube/polymer composites, Chem. Mater., 12 (2000) 1049–1052.
  24. Y.-J. Wan, L.-C. Tang, D. Yan, L. Zhao, Y.-B. Li, L.-B. Wu, J.-X. Jiang, G.-Q. Lai, Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process, Compos. Sci. Technol., 82 (2013) 60–68.
  25. Sh. Saedi, S.S. Madaeni, A.A. Shamsabadi, F. Mottaghi, The effect of surfactants on the structure and performance of PES membrane for separation of carbon dioxide from methane, Sep. Purif. Technol., 99 (2012) 104–119.
  26. Y.F. Li, X.Q. Li, H. Wu, Q.P. Xin, S.F. Wang, Y. Liu, Z.Z. Tian, T.T. Zhou, Z.Y. Jiang, H.W. Tian, X.Z. Cao, B.Y. Wang, Anionic surfactant-doped PEBAX® membrane with optimal free volume characteristics for efficient CO2 separation, J. Membr. Sci., 493 (2015) 460–469.
  27. P.S. Goh, A.F. Ismail, S.M. Sanip, B.C. Ng, M. Aziz, Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol., 81 (2011) 243–264.
  28. N.A.H.M. Nordin, S.M. Racha, T. Matsuura, N. Misdan, N.A.A. Sani, A.F. Ismail, A. Mustafa, Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: synthesis and preparation, RSC Adv., 5 (2015) 43110–43120.
  29. Sigma-Aldrich ZIF-8 Data Sheet.
  30. Sigma-Aldrich Pluronic P123 Data Sheet.
  31. H.L. Frisch, The time lag in diffusion, J. Phys. Chem., 61 (1957) 1, 93–95.
  32. M. Szwast, D. Polak, B. Marcjaniak, The influence of temperature and pressure of the feed on physical and chemical parameters of the membrane made of PEBA copolymer, Desal. Water Treat., 128 (2018) 193–198.
  33. J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, J. Membr. Sci., 107 (1995) 1–21.
  34. M.S.A. Wahab, A.R. Sunarti, Development of PEBAX® based membrane for gas separation: a review, Int. J. Membr. Sci. Technol., 2 (2015) 79.
  35. F. Gao, Y.K. Li, Z.J. Bian, J. Hu, H.L. Liu, Dynamic hydrophobic hindrance effect of zeolite@zeolitic imidazolate framework composites for CO2 capture in the presence of water, J. Mater. Chem. A, 3 (2015) 8091–8097.
  36. K.G. Grigorov, I.C. Oliveira, H.S. Maciel, M. Massi, M.S. Oliveira Jr., J. Amorim, C.A. Cunha, Optical and morphological properties of N-doped TiO2 thin films, Surf. Sci., 605 (2011) 775–782.
  37. Y.-Q. Wang, Y.-L. Su, Q. Sun, X.-L. Ma, Z.-Y. Jiang, Generation of anti-biofouling ultrafiltration membrane surface by blending novel branched amphiphilic polymers with polyethersulfone, J. Membr. Sci., 286 (2006) 228–236.
  38. S.Y. Hwang, W.S. Chi, S.J. Lee, S.H. Im, J.H. Kim, J.S. Kim, Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation, J. Membr. Sci., 480 (2015) 11–19.
  39. L.S. Lai, Y.F. Yeong, K.K. Lau, M.S. Azmi, Zeolite imidazole frameworks membranes for CO2/CH4 separation from natural gas: a review, J. Appl. Sci., 14 (2014) 1161.
  40. K.C. Tam, E. Wyn-Jones, Insights on polymer surfactant complex structures during the binding of surfactants to polymers as measured by equilibrium and structural techniques, Chem. Soc. Rev., 35 (2006) 693–709.
  41. M.W. Sulek, J. Janiszewska, K. Kurzepa, B. Mirkowska, The effect of anionic surfactant – polyvinylpyrrolidone complexes formed in aqueous solutions on physicochemical and functional properties of shampoos, Polimery, 5 (2018) 117–122.