References

  1. T. Haas, M. Kircher, T. Köhler, G. Wich, U. Schörken, R. Hagen, White Biotechnology, R. Höfer, Ed., Sustainable Solutions for Modern Economics, Vol. 12, RSC Green Chemistry Series, RSC Publications, Cambridge, 2010, pp. 436–474.
  2. R. Hatti-Kaul, U. Törnvall, L. Gustafssomn, P. Börjesson, Industrial biotechnology for the production of bio-based chemicals – a cradle-to-grave perspective, Trends Biotechnol., 25 (2007) 119–124.
  3. B. Erickson, J.E. Nelson, P. Winters, Perspective on opportunities in industrial biotechnology in renewable chemicals, Biotechnol. J., 7 (2012) 176–185.
  4. M. Sauer, D. Porro, D. Mattanovich, P. Branduardi, Microbial production of organic acids: expanding the markets, Trends Biotechnol., 26 (2018) 100–108.
  5. Y. Song, J. Li, H. dong Shin, L. Liu, G. Du, J. Chen, Biotechnological production of alpha-keto acids: current status and perspectives, Bioresour. Technol., 219 (2016) 716–724.
  6. R.W. Nicol, K. Marchand, W.D. Lubitz, Bioconversion of crude glycerol by fungi, Appl. Microbiol. Biotechnol., 93 (2012) 1865–1875.
  7. S.V. Kamzolova, M.N. Chiglintseva, J.N. Lunina, I.G. Morgunov, α-Ketoglutaric acid production by Yarrowia lipolytica and its regulation, Appl. Microbiol. Biotechnol., 96 (2012) 783–791.
  8. M. Szczygiełda, K. Prochaska, Alpha-ketoglutaric acid production using electrodialysis with bipolar membrane, J. Membr. Sci., 536 (2017) 37–43.
  9. A.J.J. Straathof, The Proportion of Downstream Costs in Fermentative Production Processes, M. Moo-Young, Comprehensive Biotechnology, 2nd ed., Elsevier, Pergamon Press, 2011, pp. 811–814.
  10. R.C. Wu, Y.Z. Xu, Y.Q. Song, J.A. Luo, D. Liu, A novel strategy for salts recovery from 1,3-propanediol fermentation broth by bipolar membrane electrodialysis, Sep. Purif. Technol., 83 (2011) 9–14.
  11. M. Szczygiełda, J. Antczak, K. Prochaska, Separation and concentration of succinic acid from post-fermentation broth by bipolar membrane electrodialysis (EDBM), Sep. Purif. Technol., 181 (2017) 53–59.
  12. J. Antczak, M. Szczygiełda, K. Prochaska, Nanofiltration separation of succinic acid from post-fermentation broth: impact of process conditions and fouling analysis, J. Ind. Eng. Chem., 77 (2019) 253–261.
  13. A. Krzyżnowska, M. Regel-Rosocka, The effect of fermentation broth composition on removal of carboxylic acids by reactive extraction with Cyanex 923, Sep. Purif. Technol., 236 (2020) 116289, doi: 10.1016/j.seppur.2019.116289.
  14. S.W. Snyder, Commercializing Bio based Products: Opportunities, Challenges, Benefits, and Risks, Royal Society of Chemistry, UK, 2016.
  15. J. Antczak, M. Szczygiełda, K. Prochaska, An environmentfriendly multi-step membrane-based system for succinic acid recovery from the fermentation broth, Desal. Water Treat., 128 (2018) 51–60.
  16. J. Garci-Aguirre, M. Alvarado-Morales, I.A. Fotidis, I. Angelidaki, Up-concentration of succinic acid, lactic acid, and ethanol fermentations broths by forward osmosis, Biochem. Eng. J., 155 (2020) 107482, doi: 10.1016/j.bej.2019.107482.
  17. T.K. Mai, S. Rodtong, Y. Baimark, J. Rarey, A. Boontawan, Membrane-based purification of optically pure D-lactic acid from fermentation broth to poly(D-lactide) polymer, J. Membr. Sci., 551 (2018) 180–190.
  18. A.K. Neu, D. Pleissner, K. Mehlmann, R. Schneider, G.I. Puerta-Quintero, J. Venus, Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure L(+)-lactic acid production, Bioresour. Technol., 211 (2016) 398–405.
  19. H.D. Lee, M.Y. Lee, Y.S. Hwang, Y.H. Cho, H.W. Kim, H.B. Park, Separation and purification of lactic acid from fermentation broth using membrane-integrated separation processes, Ind. Eng. Chem. Res., 56 (2017) 8301–8310.
  20. K. Wang, W. Li, Y. Fan, W. Xing, Integrated membrane process for the purification of lactic acid from a fermentation broth neutralized with sodium hydroxide, Ind. Eng. Chem. Res., 52 (2013) 2412–2417.
  21. M.-S. Kim, J.-G. Na, M.-K. Lee, H. Ryu, Y.-K. Chang, J.M. Triolo, Y.-M. Yun, D.-H. Kim, More value from food waste: lactic acid and biogas recovery, Water Res., 96 (2016) 208–216.
  22. D. Pleissner, R. Schneider, J. Venus, T. Koch, Separation of lactic acid and recovery of salt-ions from fermentation broth, J. Chem. Technol. Biotecnnol., 92 (2017) 504–511.
  23. A. Olszewska-Widdrat, M. Alexandri, J.P. López-Gómez, R. Schneider, M. Mandl, J. Venus, Production and purification of L-lactic acid in lab and pilot scales using sweet sorghum juice, Fermentation, 5 (2019) 36, doi: 10.3390/fermentation5020036.
  24. J.P. López-Gónzalez, M. Alexandri, R. Shneider, M. Lattore- Sánchez, C. Coll Lozano, J. Venus, Organic fraction of municipal solid waste for the production of L-lactic acid with high optical purity, J. Cleaner Prod., 247 (2020) 119165, doi: 10.1016/j. jclepro.2019.119165.
  25. P.A. Sosa, C. Roca, S. Velizarov, Membrane assisted recovery and purification of bio-based succinic acid for improved process sustainability, J. Membr. Sci., 501 (2016) 236–247.
  26. J. Lubsungneon, S. Srisuno, S. Rodtong, A. Boontawan, Nanofiltration coupled with vapor permeation-assisted esterification as an effective purification step for fermentationderived succinic acid, J. Membr. Sci., 459 (2014) 132–142.
  27. N.T.H. Thuy, A. Boontawan, Production of very-high purity succinic acid from fermentation broth using microfiltration and nanofiltration-assisted crystallization, J. Membr. Sci., 524 (2017) 470–481.
  28. K. Prochaska, J. Antczak, M. Regel-Rosocka, M. Szczygiełda, Removal of succinic acid from fermentation broth by multistage process (membrane separation and reactive extraction), Sep. Purif. Technol., 192 (2018) 360–368.
  29. M.J. Woźniak, K. Prochaska, Fumaric acid separation from fermentation broth using nanofiltration (NF) and bipolar electrodialysis (EDBM), Sep. Purif. Technol., 125 (2014) 179–186.
  30. K. Prochaska, K. Staszak, M.J. Woźniak-Budych, M. Regel- Rosocka, M. Adamczak, M. Wiśniewski, J. Staniewski, Nanofiltration, bipolar electrodialysis and reactive extraction hybrid system for separation of fumaric acid from fermentation broth, Bioresour. Technol., 167 (2014) 219–225.
  31. P. Pal, R. Kumar, J. Nayak, S. Banerjee, Fermentative production of gluconic acid in membrane-integrated hybrid reactor system: analysis of process intensification, Chem. Eng. Process., 122 (2017) 258–268.
  32. N. Phanthumchinda, S. Thitiprasert, S. Tanasupawat, S. Assabumrungrat, N. Thongchul, Process and cost modeling of lactic acid recovery from fermentation broths by membranebased process, Process Biochem., 68 (2018) 205–213.
  33. Y. Wang, Y. Tashiro, K. Sonomoto, Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits, J. Biosci. Bioeng., 119 (2015) 10–18.
  34. J.P. López-Gómez, M. Alexandri, R. Schneider, J. Venus, A review on the current developments in continuous lactic acid fermentations and case studies utilising inexpensive raw materials, Process Biochem., 79 (2019) 1–10.
  35. R.P. John, K.M. Nampoorthiri, A. Pandey, Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives, Appl. Microbiol. Biotechnol., 74 (2007) 524–534.
  36. R.A. De Oliveira, M. Alexandri, A. Komesu, J. Venus, C.E. Vaz Rossell, R.M. Filho, Current advances in separation and purification of second-generation lactic acid, Sep. Purif. Rev., 49 (2020) 159–175.
  37. V. Juturu, J.C. Wu, Microbial production of lactic acid: the latest development, Crit. Rev. Biotechnol., 36 (2015) 1–11.
  38. J. Tang, X. Wang, Y. Hu, Y. Zhang, Y. Li, Lactic acid fermentation from food waste with indigenous microbiota: effects of pH, temperature and high OLR, Waste Manage., 52 (2016) 278–285.
  39. B.K. Ahring, J.J. Traverso, N. Murali, K. Srinivas, Continuous fermentation of clarified corn stover hydrolysate for the production of lactic acid at high yield and productivity, Biochem. Eng. J., 109 (2016) 162–169.
  40. S.G. Karp, A.H. Igashiyama, P.F. Siqueira, J.C. Carvalho, L.P.S. Vandenberghe, V. Thomaz-Soccol, J. Coral, J.-L. Tholozan, A. Pandey, C.R. Soccol, Application of the biorefinery concept to produce L-lactic acid from the soybean vinasse at laboratory and pilot scale, Bioresour. Technol., 102 (2011) 1765–1772.
  41. N. Murakami, M. Oba, M. Iwamoto, Y. Tashiro, T. Noguchi, K. Bonkohara, M.A. Abdel-Rahman, T. Zendo, M. Shimoda, K. Sakai, K. Sonomoto, L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss, J. Biosci. Bioeng., 121 (2016) 89–95.
  42. J.R.M. Almeida, L.C.L. Favaro, B.F. Quirino, Biodiesel biorefinery: opportunities and challenges for microbial production of fuels andchemicals from glycerol waste, Biotechnol. Biofuels, 5 (2012) 48, doi: 10.1186/1754-6834-5-48.
  43. A.-A. Hong, K.-K Cheng, F. Peng, S. Zhou, Y. Sun, C.-M. Liu, D.-H. Liu, Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid, J. Chem. Technol. Biotechnol., 84 (2009) 1576–1581.
  44. B. Wojtyniak, J. Kołodziejczak, D. Szaniawska, Production of lactic acid by ultrafiltration of fermented whey obtained in bioreactor equipped with ZOSS membrane, Chem. Eng. J., 305 (2016) 28–36.
  45. B. Xiong, T.L. Richard, M. Kumar, Integrated acidogenic digestion and carboxylic acid separation by nanofiltration membranes for the lignocellulosic carboxylate platform, J. Membr. Sci., 489 (2015) 275–283.
  46. D. Pleissner, A.-K. Neu, K. Mehlmann, R. Schneider, G.I. Puerta-Quintero, J. Venus, Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans laboratory and pilot scales, Bioresour. Technol., 218 (2016) 167–173.
  47. X. Wang, Y. Wang, X. Zhang, T. Xu, In situ combination of fermentation and electrodialysis with bipolar membranes for the production of lactic acid: operational compatibility and uniformity, Bioresour. Technol., 125 (2012) 165–171.
  48. S. González-García, L. Argiz, P. Patricia Míguez, B. Gullón, Exploring the production of bio-succinic acid from apple pomace using an environmental approach, Chem. Eng. J., 350 (2018) 982–991.
  49. C.S.K. Lin, R. Luque, J.H. Clark, C. Webb, C. Du, Wheat-based biorefining strategy for fermentative production and chemical transformations of succinic acid, Biofuels, Bioprod. Biorefin., 6 (2012) 88–104.
  50. K.-K. Cheng, X.-B. Zhao, J. Zeng, R.-C. Wu, Y.-Z. Xu, D.-H. Liu, J.-A. Zhang, Downstream processing of biotechnological produced succinic acid, Appl. Microbiol. Biotechnol., 95 (2012) 841–850.
  51. T. Kurzrock, D. Weuster-Botz, Recovery of succinic acid from fermentation broth, Biotechnol. Lett., 32 (2010) 331–339.
  52. M. Alexandri, A. Vlysidis, H. Papapostolou, O. Tverezovskaya, V. Tverezovskiy, I.K. Kookos, A. Koutinas, Downstream separation and purification of succinic acid from fermentation broths using spent sulphite liquor as feedstock, Sep. Purif. Technol., 209 (2019) 666–675.
  53. H. Nakajima, P. Dijkstra, K. Loos, The recent developments in biobased polymers toward general and engineering applications: polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed, Polymers, 9 (2017) 523, doi: 10.3390/polym9100523.
  54. I. Bechthold, K. Bretz, S. Kabasci, R. Kopltzky, A. Springer, Succinic acid: a new platform chemical for biobased polymers from renewable resources, Chem. Eng. Technol., 31 (2008) 647–654.
  55. M. Morales, M. Ataman, S. Badr, S. Linster, I. Kourlimpinis, S. Papadokonstantakis, V. Hatzimanikatis, K. Hungerbűhler, Sustainability assessment of succinic acid production technologies from biomass using metabolic engineering, Energy Environ. Sci., 9 (2016) 2794–2805.
  56. S. Chan, S. Kanchanatawee, K. Jantama, Production of succinic acid from sucrose and sugarcane molasses by metabolically engineered Escherichia coli, Bioresour. Technol., 103 (2012) 329–336.
  57. M. Huang, J. Cheng, P. Chen, G. Zhang, D. Wang, Y. Hu, Efficient production of succinic acid in engineered Escherichia coli strains controlled by anaerobically-induced nirB promoter using sweet potato waste hydrolysate, J. Environ. Manage., 237 (2019) 147–154.
  58. M.L.A. Jansen, W.M. van Gulk, Towards large scale fermentative production of succinic acid, Curr. Opin. Biotechnol., 30 (2014) 190–197.
  59. J.H. Ahn, Y.-S. Jang, S.-Y. Lee, Production of succinic acid by metabolically engineered microorganisms, Curr. Opin. Biotechnol., 42 (2016) 54–66.
  60. N.T.H. Thuy, A. Kongkaew, A. Flood, A. Boontawan, Fermentation and crystallization of succinic acid from Actinobacillus succinogenes ATCC55618 using fresh cassava root as the main substrate, Bioresour. Technol., 233 (2017) 342–352.
  61. S. Sadhukhan, R. Villa, U. Sarkar, Microbial production of succinic acid using crude and purified glycerol from a Crotalaria juncea based biorefinery, Biotechnol. Rep., 10 (2016) 84–93.
  62. C. Gao, X. Yang, H. Wang, C.P. Rivero, C. Li, Z. Cui, Q. Qi, C.S.K. Lin, Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica, Biotechnol. Biofuels, 9 (2016) 179, doi: 10.1186/s13068-016-0597-8.
  63. A. Naude, W. Nicol, Fumaric acid fermentation with immobilised Rhizopus oryzae: quantifying time-dependent variations in catabolic flux, Process Biochem., 56 (2017) 8–20.
  64. H. Liu, X. Yue, Y. Jin, M. Wang, L. Deng, F. Wang, T. Tan, Preparation of hydrolytic liquid from dried distiller’s grains with solubles and fumaric acid fermentation by Rhizopus arrhizus RH 7–13, J. Environ. Manage., 201 (2017) 172–176.
  65. H. Liu, J. Ma, M. Wang, W. Wang, L. Deng, K. Nie, X. Yue, F. Wang, T. Tan, Food waste fermentation to fumaric acid by Rhizopus arrhizus RH7–13, Appl. Biochem. Biotechnol., 180 (2016) 1524–1533.
  66. R.K. Das, S.K. Brar, M. Verma, Potential use of pulp and paper solid waste for the bio-production of fumaric acid through submerged and solid state fermentation, J. Cleaner Prod., 112 (2016) 4435–4444.
  67. A. Papadaki, H. Papapostolou, M. Alexandri, N. Kopsahelis, S. Papnikolaou, A.M. de Castro, D.M.G. Freire, A.A. Koutinas, Fumaric acid production using renewable resources from biodiesel and cane sugar production processes, Environ. Sci. Pollut. Res., 25 (2018) 35960–35970.
  68. A. Papadaki, N. Androutsopoulos, M. Patsalou, M. Koutinas, N. Kopsahelis, A.M. de Castro, S. Papanikolaou, A.A. Koutinas, Biotechnological production of fumaric acid: the effect of morphology of Rhizopus arrhizus NRRL 2582, Fermentation, 3 (2017) 33, doi: 10.3390/fermentation3030033.
  69. K. Zhang, C. Yu, S.-T. Yang, Effects of soybean meal hydrolysate as the nitrogen source on seed culture morphology and fumaric acid production by Rhizopus oryzae, Process Biochem., 50 (2015) 173–179.
  70. G. Wang, D. Huang, Y. Li, J. Wen, X. Jia, A metabolic-based approach to improve xylose utilization for fumaric acid production from acid pretreated wheat bran by Rhizopus oryzae, Bioresour. Technol., 180 (2015) 119–127.
  71. Y. Zhou, K. Nie, X. Zhang, S. Liu, M. Wang, L. Deng, F. Wang, T. Tan, Production of fumaric acid from biodiesel-derived crude glycerol by Rhizopus arrhizus, 163 (2014) 48–53.
  72. V. Martin-Dominguez, J. Estevez, F. de Bojra Ojembarrena, V.E. Santos, M. Ladero, Fumaric acid production: a biorefinery perspective, Fermentation, 4 (2018) 33, doi: 10.3390/fermentation4020033.
  73. H. Zhang, G. Liu, J. Zhang, J. Bao, Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacter oxydans and techno-economic analysis, Bioresour. Technol., 216 (2016) 123–131.
  74. A.M. Cañete-Rodríguez, I.M. Santos-Dueñas, J.E. Jiménez- Hornero, A. Ehrenreich, W. Liebl, I. García-García, Gluconic acid: properties, production methods and applications—an excellent opportunity for agro-industrial by-products and waste bio-valorization, Process Biochem., 51 (2016) 1891–1903.
  75. X. Zhou, X. Zhou, G. Liu, Y. Xu, V. Balan, Integrated production of gluconic acid and xylonic acid using dilute acid pretreated corn stover by two-stage fermentation, Biochem. Eng. J., 137 (2018) 18–22.
  76. D. Wang, C. Wang, D. Wei, J. Shi, C.H. Kim, B. Jiang, Z. Han, J. Hao, Gluconic acid production by gad mutant of Klebsiella pneumonia, World J. Microbiol. Biotechnol., 32 (2016) 132, doi: 10.1007/s11274-016-2080-x.
  77. Y. Jiang, K. Liu, H. Zhang, Y. Wang, Q. Yuan, N. Su, J. Bao, X. Fang, Gluconic acid production from potato waste by Gluconobacter oxydans using sequential hydrolysis and fermentation, ACS Sustainable Chem. Eng., 5 (2017) 6116–6123.
  78. A.M. Cañete-Rodríguez, I.M. Santos-Dueñas, J.E. Iménez- Hornero, M.J. Torija-Martínez, A. Mas, I. García-García, Revalorization of strawberry surpluses by bio-transforming its glucose content into gluconic acid, Food Bioprod. Process., 99 (2016) 188–196.
  79. E.O. Ajala, M.A. Ajala, D.S. Ogunniyi, M.O. Sunmonu, Kinetics of gluconic acid production and cell growth in a batch bioreactor by Aspergillus niger using breadfruit hydrolysate, J. Food Process Eng., 40 (2017) e12461, doi: 10.1111/jfpe.12461.
  80. N.K. Purane, S.K. Sharma, P.D. Salunkhe, D.S. Labade, M.M. Tondlikar, Gluconic acid production from golden syrup by Aspergillus niger strain using semiautomatic stirred-tank fermenter, J. Microbial. Biochem. Technol., 4 (2012) 92–95, doi: 10.4172/1948-5948.1000077.
  81. F. Sainz, D. Navarro, E. Mateo, M.J. Torija, A. Mas, Comparison of D-gluconic acid production in selected strains of aceticacid bacteria, Int. J. Food Microbiol., 222 (2016) 40–47.
  82. A.M. Cañete-Rodríguez, I.M. Santos-Dueñas, M.J. Torija- Martinez, A. Mas, J.E. Iménez-Hornero, I. García-García, Preparation of a pure inoculum of acetic acid bacteria for the selective conversion of glucose in strawberry purée into gluconic acid, Food Bioprod. Process, 96 (2015) 35–42.
  83. P. Pal, R. Kumar, S. Banerjee, Purification and concentration of gluconic acid from an integrated fermentation and membrane process using response surface optimized conditions, Front. Chem. Sci. Eng., 13 (2019) 152–163.