References
- R. Lanza, R. Langer, J. Vacanti, Principles of Tissue Engineering,
2nd ed., Academic Press, San Diego, 2007.
- R.H. Fang, Y. Jiang, J.C. Fang, L. Zhang, Cell membrane-derived
nanomaterials for biomedical applications, Biomaterials,
128 (2017) 69–83.
- V. Guduric, M. Fénelon, J.-C. Fricain, S. Catros, Membrane
scaffolds for 3D cell culture, Curr. Trends Future Dev.
Biomembr., (2020) 157–189, doi: 10.1016/B978-0-12-814225-
7.00007-3.
- S. Novelli, C. Engelman, V. Piemonte, Membrane application
for liver support devices, Curr. Trends Future Dev. Biomembr.,
(2020) 21–44, doi: 10.1016/B978-0-12-814225-7.00002-4.
- F. Ahmadi, R. Giti, S. Mohammadi-Samani, F. Mohammadi,
Biodegradable scaffolds for cartilage tissue engineering, Galen
Med. J., 6 (2017) 70–80.
- D.J. Mooney, T. Boontheekul, R. Chen, K. Leach, Actively
regulating bioengineered tissue and organ formation, Orthod.
Craniofacial Res., 8 (2005) 141–144.
- M.P. Lutolf, J.A. Hubbell, Synthetic biomaterials as instructive
extracellular microenvironments for morphogenesis in tissue
engineering, Nat. Biotechnol., 23 (2005) 47–55.
- F.M. Chen, X. Liu, Advancing biomaterials of human origin for
tissue engineering, Prog. Polym. Sci., 53 (2016) 86–168.
- G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han,
B. Li, W. Shu, 3D bioactive composite scaffolds for bone
tissue engineering, Bioact. Mater., 3 (2018) 278–314.
- Y. Liu, J. Luo, X. Chen, W. Liu, T. Chen, Cell membrane coating
technology: a promising strategy for biomedical applications,
Nano Microlett., 11 (2019), doi: 10.1007/s40820-019-0330-9.
- M. Farina, J.F. Alexander, U. Thekkedath, M. Ferrari, A. Grattoni,
Cell encapsulation: overcoming barriers in cell transplantation
in diabetes and beyond, Adv. Drug Deliv. Rev., 139 (2019)
92–115.
- G. Orive, D. Emerich, A. Khademhosseini, S. Matsumoto,
R.M. Hernández, J.L. Pedraz, T. Desai, R. Calafiore, P. de Vos,
Engineering a clinically translatable bioartificial pancreas to
treat type I diabetes, Trends Biotechnol., 36 (2018) 445–456.
- O.M. Sabek, M. Farina, D.W. Fraga, S. Afshar, A. Ballerini,
C.S. Filgueira, U.R. Thekkedath, A. Grattoni, A.O. Gaber, Threedimensional
printed polymeric system to encapsulate human
mesenchymal stem cells differentiated into islet-like insulinproducing
aggregates for diabetes treatment, J. Tissue Eng.,
7 (2016), doi: 10.1177/2041731416638198.
- M.A.J. Mazumder, Bio-encapsulation for the immune-protection
of therapeutic cells, Adv. Mater. Res., 810 (2013) 1–39.
- P. De Vos, H.A. Lazarjani, D. Poncelet, M.M. Faas, Polymers
in cell encapsulation from an enveloped cell perspective,
Adv. Drug Deliv. Rev., 67–68 (2014) 15–34.
- J.A.M. Steele, J.P. Hallé, D. Poncelet, R.J. Neufeld, Therapeutic
cell encapsulation techniques and applications in diabetes,
Adv. Drug Deliv. Rev., 67–68 (2014) 74–83.
- F. Asghari, M. Samiei, K. Adibkia, A. Akbarzadeh, S. Davaran,
Biodegradable and biocompatible polymers for tissue
engineering application: a review, Artif. Cells Nanomed.
Biotechnol., 45 (2017) 185–192.
- S.R. Bhatia, S.F. Khattak, S.C. Roberts, Polyelectrolytes for
cell encapsulation, Curr. Opin. Colloid Interface Sci., 10 (2005)
45–51.
- C.G. Thanos, R. Calafiore, G. Basta, B.E. Bintz, W.J. Bell,
J. Hudak, A. Vasconcellos, P. Schneider, S.J. Skinner, M. Geaney,
P. Tan, R.B. Elliot, M. Tatnell, L. Escobar, H. Qian, E. Mathiowitz,
D.F. Emerich, Formulating the alginate–polyornithine
biocapsule for prolonged stability: evaluation of composition
and manufacturing technique, J. Biomed. Mater. Res. Part A,
83 (2007) 216–224.
- L. Baruch, M. Machluf, Alginate–chitosan complex coacervation
for cell encapsulation: effect on mechanical properties
and on long-term viability, Biopolymers, 82 (2006) 570–579.
- S. Yan, M.M. Tu, Y.R. Qiu, The hemocompatibility of the
modified polysulfone membrane with 4-(chloromethyl)benzoic
acid and sulfonated hydroxypropyl chitosan, Colloids Surf., B,
188 (2019), doi: 10.1016/j.colsurfb.2019.110769.
- E. Marsich, M. Borgogna, I. Donati, P. Mozetic, B.L. Strand,
S.G. Salvador, F. Vittur, S. Paoletti, Alginate/lactose-modified
chitosan hydrogels: a bioactive biomaterial for chondrocyte
encapsulation, J. Biomed. Mater. Res. Part A, 84 (2008) 364–376.
- I. Donati, I.J. Haug, T. Scarpa, M. Borgogna, K.I. Draget,
G. Skjåk-Bræk, S. Paoletti, Synergistic effects in semidilute
mixed solutions of alginate and lactose-modified chitosan
(chitlac), Biomacromolecules, 8 (2007) 957–962.
- B. Baroli, Photopolymerization of biomaterials: issues and
potentialities in drug delivery, tissue engineering, and cell
encapsulation applications, J. Chem. Technol. Biotechnol.,
81 (2006) 491–499.
- S. Ponce, G. Orive, R. Hernández, A.R. Gascón, J.L. Pedraz,
B.J. de Haan, M.M. Faas, H.J. Mathieu, P. de Vos, Chemistry
and the biological response against immunoisolating alginatepolycation
capsules of different composition, Biomaterials,
27 (2006) 4831–4839.
- T. Orłowski, E. Godlewska, M. Tarchalska, J. Kinasiewicz,
M. Antosiak, M. Sabat, The influence of immune system
stimulation on encapsulated islet graft survival, Arch. Immunol.
Ther. Exp., 53 (2005) 180–184.
- T. Orłowski, E. Godlewska, M. Mościcka, E. Sitarek, The
influence of intraperitoneal transplantation of free and encapsulated
langerhans islets on the second set phenomenon,
Artif. Organs, 27 (2003) 1062–1067.
- D. Lewińska, A. Chwojnowski, C. Wojciechowski,
B. Kupikowska-Stobba, M. Grzeczkowicz, A. Weryński, Electrostatic
droplet generator with 3-coaxial-nozzle head for microencapsulation
of living cells in hydrogel covered by synthetic
polymer membranes, Sep. Sci. Technol., 47 (2012) 463–469.
- B. Kupikowska, D. Lewińska, K. Dudziński, J. JankowskaŚliwińska,
M. Grzeczkowicz, C. Wojciechowski, A. Chwojnowski,
Influence of changes in composition of the
membrane-forming solution on the structure of alginatepolyethersulfone
microcapsules, Biocybern. Biomed. Eng.,
29 (2009) 61–69.
- M. Grzeczkowicz, D. Lewińska, A method for investigating
transport properties of partly biodegradable spherical
membranes using vitamin B12 as the marker, Desal. Water
Treat., 128 (2018) 170–178.
- G. Khang, H.B. Lee, J.B. Park, Biocompatibility of polysulfone
I. surface modifications andcharacterizations, Biomed. Mater.
Eng., 5 (1995) 245–258.
- J.Y. Ho, T. Matsuura, J.P. Santerre, The effect of fluorinated
surface modifying macromolecules on the surface morphology
of polyethersulfone membranes, J. Biomater. Sci. Polym. Ed.,
11 (2000) 1085–1104.
- M. Hayama, K.I. Yamamoto, F. Kohori, K. Sakai, How polysulfone
dialysis membranes containing polyvinylpyrrolidone achieve
excellent biocompatibility?, J. Membr. Sci., 234 (2004) 41–49.
- Y.X.J. Ong, L.Y. Lee, P. Davoodi, C.H. Wang, Production of
drug-releasing biodegradable microporous scaffold using a
two-step micro-encapsulation/supercritical foaming process,
J. Supercrit. Fluids, 133 (2018) 263–269.
- A. Higuchi, K. Shirano, M. Harashima, B.O. Yoon, M. Hara,
M. Hattori, K. Imamura, Chemically modified polysulfone
hollow fibers with vinylpyrrolidone having improved blood
compatibility, Biomaterials, 23 (2002) 2659–2666.
- K.S. Kim, K.H. Lee, K. Cho, C.E. Park, Surface modification
of polysulfone ultrafiltration membrane by oxygen plasma
treatment, J. Membr. Sci., 199 (2002) 135–145.
- S. Zhao, Z. Wang, J. Wang, S. Yang, S. Wang, PSf/PANI
nanocomposite membrane prepared by in situ blending of
PSf and PANI/NMP, J. Membr. Sci., 376 (2011) 83–95.
- W. Zhao, J. Huang, B. Fang, S. Nie, N. Yi, B. Su, H. Li, C. Zhao,
Modification of polyethersulfone membrane by blending semiinterpenetrating
network polymeric nanoparticles, J. Membr.
Sci., 369 (2011) 258–266.
- W. Zhao, Y. Su, C. Li, Q. Shi, X. Ning, Z. Jiang, Fabrication of
antifouling polyethersulfone ultrafiltration membranes using
Pluronic F127 as both surface modifier and pore-forming agent,
J. Membr. Sci., 318 (2008) 405–412.
- A.M. Isloor, B.M. Ganesh, S.M. Isloor, A.F. Ismail, H.S. Nagaraj,
M. Pattabi, Studies on copper coated polysulfone/modified
poly isobutylene alt-maleic anhydride blend membrane and
its antibiofouling property, Desalination, 308 (2013) 82–88.
- Y.Q. Wang, T. Wang, Y.L. Su, F.B. Peng, H. Wu, Z.Y. Jiang,
Remarkable reduction of irreversible fouling and improvement
of the permeation properties of poly(ether sulfone)
ultrafiltration membranes by blending with pluronic F127,
Langmuir, 21 (2005) 11856–11862.
- K.A. Faneer, R. Rohani, A.W. Mohammad, Influence of
pluronic addition on polyethersulfone membrane for xylitol
recovery from biomass fermentation solution, J. Cleaner Prod.,
171 (2018) 995–1005.
- Y. Zhang, X. Tong, B. Zhang, C. Zhang, H. Zhang, Y. Chen,
Enhanced permeation and antifouling performance of polyvinyl
chloride (PVC) blend Pluronic F127 ultrafiltration membrane
by using salt coagulation bath (SCB), J. Membr. Sci., 548 (2018)
32–41.
- J.J. Qin, F.S. Wong, Hypochlorite treatment of hydrophilic
hollow fiber ultrafiltration membranes for high fluxes,
Desalination, 146 (2002) 307–309.
- Y. Ding, B. Bikson, Macro and meso porous polymeric materials
from miscible polysulfone/polyimide blends by chemical
decomposition of polyimides, Polymer, 51 (2010) 46–52.
- C. Wojciechowski, A. Chwojnowski, L. Granicka, E. Łukowska,
Polysulfone/cellulose acetate blend semi degradable capillary
membranes preparation and characterization, Desal. Water
Treat., 64 (2017) 365–371.
- W. Sikorska, C. Wojciechowski, M. Przytulska, G. Rokicki,
M. Wasyłeczko, J.L. Kulikowski, A. Chwojnowski, Polysulfone–
polyurethane (PSf-PUR) blend partly degradable hollow fiber
membranes: preparation, characterization, and computer
image analysis, Desal. Water Treat., 128 (2018) 383–391.
- E. Pamuła, P. Dobrzyński, M. Bero, C. Paluszkiewicz, Hydrolytic
degradation of porous scaffolds for tissue engineering from
terpolymer of L-lactide, ε-caprolactone and glycolide, J. Mol.
Struct., 744–747 (2005) 557–562.
- P. Dobrzynski, Synthesis of biodegradable copolymers with
low-toxicity zirconium compounds. III. Synthesis and chainmicrostructure
analysis of terpolymer obtained from L-lactide,
glycolide, and ε-caprolactone initiated by zirconium(IV)
acetylacetonate, J. Polym. Sci., Part A: Polym. Chem., 40 (2002)
3129–3143.
- P. Dobrzynski, Synthesis of biodegradable copolymers with
low-toxicity zirconium compounds. II. Copolymerization
of glycolide with ε-caprolactone initiated by zirconium(IV)
acetylacetonate and zirconium(IV) chloride, J. Polym. Sci., Part
A: Polym. Chem., 40 (2002) 1379–1394.