References

  1. R. Lanza, R. Langer, J. Vacanti, Principles of Tissue Engineering, 2nd ed., Academic Press, San Diego, 2007.
  2. R.H. Fang, Y. Jiang, J.C. Fang, L. Zhang, Cell membrane-derived nanomaterials for biomedical applications, Biomaterials, 128 (2017) 69–83.
  3. V. Guduric, M. Fénelon, J.-C. Fricain, S. Catros, Membrane scaffolds for 3D cell culture, Curr. Trends Future Dev. Biomembr., (2020) 157–189, doi: 10.1016/B978-0-12-814225- 7.00007-3.
  4. S. Novelli, C. Engelman, V. Piemonte, Membrane application for liver support devices, Curr. Trends Future Dev. Biomembr., (2020) 21–44, doi: 10.1016/B978-0-12-814225-7.00002-4.
  5. F. Ahmadi, R. Giti, S. Mohammadi-Samani, F. Mohammadi, Biodegradable scaffolds for cartilage tissue engineering, Galen Med. J., 6 (2017) 70–80.
  6. D.J. Mooney, T. Boontheekul, R. Chen, K. Leach, Actively regulating bioengineered tissue and organ formation, Orthod. Craniofacial Res., 8 (2005) 141–144.
  7. M.P. Lutolf, J.A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nat. Biotechnol., 23 (2005) 47–55.
  8. F.M. Chen, X. Liu, Advancing biomaterials of human origin for tissue engineering, Prog. Polym. Sci., 53 (2016) 86–168.
  9. G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han, B. Li, W. Shu, 3D bioactive composite scaffolds for bone tissue engineering, Bioact. Mater., 3 (2018) 278–314.
  10. Y. Liu, J. Luo, X. Chen, W. Liu, T. Chen, Cell membrane coating technology: a promising strategy for biomedical applications, Nano Microlett., 11 (2019), doi: 10.1007/s40820-019-0330-9.
  11. M. Farina, J.F. Alexander, U. Thekkedath, M. Ferrari, A. Grattoni, Cell encapsulation: overcoming barriers in cell transplantation in diabetes and beyond, Adv. Drug Deliv. Rev., 139 (2019) 92–115.
  12. G. Orive, D. Emerich, A. Khademhosseini, S. Matsumoto, R.M. Hernández, J.L. Pedraz, T. Desai, R. Calafiore, P. de Vos, Engineering a clinically translatable bioartificial pancreas to treat type I diabetes, Trends Biotechnol., 36 (2018) 445–456.
  13. O.M. Sabek, M. Farina, D.W. Fraga, S. Afshar, A. Ballerini, C.S. Filgueira, U.R. Thekkedath, A. Grattoni, A.O. Gaber, Threedimensional printed polymeric system to encapsulate human mesenchymal stem cells differentiated into islet-like insulinproducing aggregates for diabetes treatment, J. Tissue Eng., 7 (2016), doi: 10.1177/2041731416638198.
  14. M.A.J. Mazumder, Bio-encapsulation for the immune-protection of therapeutic cells, Adv. Mater. Res., 810 (2013) 1–39.
  15. P. De Vos, H.A. Lazarjani, D. Poncelet, M.M. Faas, Polymers in cell encapsulation from an enveloped cell perspective, Adv. Drug Deliv. Rev., 67–68 (2014) 15–34.
  16. J.A.M. Steele, J.P. Hallé, D. Poncelet, R.J. Neufeld, Therapeutic cell encapsulation techniques and applications in diabetes, Adv. Drug Deliv. Rev., 67–68 (2014) 74–83.
  17. F. Asghari, M. Samiei, K. Adibkia, A. Akbarzadeh, S. Davaran, Biodegradable and biocompatible polymers for tissue engineering application: a review, Artif. Cells Nanomed. Biotechnol., 45 (2017) 185–192.
  18. S.R. Bhatia, S.F. Khattak, S.C. Roberts, Polyelectrolytes for cell encapsulation, Curr. Opin. Colloid Interface Sci., 10 (2005) 45–51.
  19. C.G. Thanos, R. Calafiore, G. Basta, B.E. Bintz, W.J. Bell, J. Hudak, A. Vasconcellos, P. Schneider, S.J. Skinner, M. Geaney, P. Tan, R.B. Elliot, M. Tatnell, L. Escobar, H. Qian, E. Mathiowitz, D.F. Emerich, Formulating the alginate–polyornithine biocapsule for prolonged stability: evaluation of composition and manufacturing technique, J. Biomed. Mater. Res. Part A, 83 (2007) 216–224.
  20. L. Baruch, M. Machluf, Alginate–chitosan complex coacervation for cell encapsulation: effect on mechanical properties and on long-term viability, Biopolymers, 82 (2006) 570–579.
  21. S. Yan, M.M. Tu, Y.R. Qiu, The hemocompatibility of the modified polysulfone membrane with 4-(chloromethyl)benzoic acid and sulfonated hydroxypropyl chitosan, Colloids Surf., B, 188 (2019), doi: 10.1016/j.colsurfb.2019.110769.
  22. E. Marsich, M. Borgogna, I. Donati, P. Mozetic, B.L. Strand, S.G. Salvador, F. Vittur, S. Paoletti, Alginate/lactose-modified chitosan hydrogels: a bioactive biomaterial for chondrocyte encapsulation, J. Biomed. Mater. Res. Part A, 84 (2008) 364–376.
  23. I. Donati, I.J. Haug, T. Scarpa, M. Borgogna, K.I. Draget, G. Skjåk-Bræk, S. Paoletti, Synergistic effects in semidilute mixed solutions of alginate and lactose-modified chitosan (chitlac), Biomacromolecules, 8 (2007) 957–962.
  24. B. Baroli, Photopolymerization of biomaterials: issues and potentialities in drug delivery, tissue engineering, and cell encapsulation applications, J. Chem. Technol. Biotechnol., 81 (2006) 491–499.
  25. S. Ponce, G. Orive, R. Hernández, A.R. Gascón, J.L. Pedraz, B.J. de Haan, M.M. Faas, H.J. Mathieu, P. de Vos, Chemistry and the biological response against immunoisolating alginatepolycation capsules of different composition, Biomaterials, 27 (2006) 4831–4839.
  26. T. Orłowski, E. Godlewska, M. Tarchalska, J. Kinasiewicz, M. Antosiak, M. Sabat, The influence of immune system stimulation on encapsulated islet graft survival, Arch. Immunol. Ther. Exp., 53 (2005) 180–184.
  27. T. Orłowski, E. Godlewska, M. Mościcka, E. Sitarek, The influence of intraperitoneal transplantation of free and encapsulated langerhans islets on the second set phenomenon, Artif. Organs, 27 (2003) 1062–1067.
  28. D. Lewińska, A. Chwojnowski, C. Wojciechowski, B. Kupikowska-Stobba, M. Grzeczkowicz, A. Weryński, Electrostatic droplet generator with 3-coaxial-nozzle head for microencapsulation of living cells in hydrogel covered by synthetic polymer membranes, Sep. Sci. Technol., 47 (2012) 463–469.
  29. B. Kupikowska, D. Lewińska, K. Dudziński, J. JankowskaŚliwińska, M. Grzeczkowicz, C. Wojciechowski, A. Chwojnowski, Influence of changes in composition of the membrane-forming solution on the structure of alginatepolyethersulfone microcapsules, Biocybern. Biomed. Eng., 29 (2009) 61–69.
  30. M. Grzeczkowicz, D. Lewińska, A method for investigating transport properties of partly biodegradable spherical membranes using vitamin B12 as the marker, Desal. Water Treat., 128 (2018) 170–178.
  31. G. Khang, H.B. Lee, J.B. Park, Biocompatibility of polysulfone I. surface modifications andcharacterizations, Biomed. Mater. Eng., 5 (1995) 245–258.
  32. J.Y. Ho, T. Matsuura, J.P. Santerre, The effect of fluorinated surface modifying macromolecules on the surface morphology of polyethersulfone membranes, J. Biomater. Sci. Polym. Ed., 11 (2000) 1085–1104.
  33. M. Hayama, K.I. Yamamoto, F. Kohori, K. Sakai, How polysulfone dialysis membranes containing polyvinylpyrrolidone achieve excellent biocompatibility?, J. Membr. Sci., 234 (2004) 41–49.
  34. Y.X.J. Ong, L.Y. Lee, P. Davoodi, C.H. Wang, Production of drug-releasing biodegradable microporous scaffold using a two-step micro-encapsulation/supercritical foaming process, J. Supercrit. Fluids, 133 (2018) 263–269.
  35. A. Higuchi, K. Shirano, M. Harashima, B.O. Yoon, M. Hara, M. Hattori, K. Imamura, Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility, Biomaterials, 23 (2002) 2659–2666.
  36. K.S. Kim, K.H. Lee, K. Cho, C.E. Park, Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment, J. Membr. Sci., 199 (2002) 135–145.
  37. S. Zhao, Z. Wang, J. Wang, S. Yang, S. Wang, PSf/PANI nanocomposite membrane prepared by in situ blending of PSf and PANI/NMP, J. Membr. Sci., 376 (2011) 83–95.
  38. W. Zhao, J. Huang, B. Fang, S. Nie, N. Yi, B. Su, H. Li, C. Zhao, Modification of polyethersulfone membrane by blending semiinterpenetrating network polymeric nanoparticles, J. Membr. Sci., 369 (2011) 258–266.
  39. W. Zhao, Y. Su, C. Li, Q. Shi, X. Ning, Z. Jiang, Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent, J. Membr. Sci., 318 (2008) 405–412.
  40. A.M. Isloor, B.M. Ganesh, S.M. Isloor, A.F. Ismail, H.S. Nagaraj, M. Pattabi, Studies on copper coated polysulfone/modified poly isobutylene alt-maleic anhydride blend membrane and its antibiofouling property, Desalination, 308 (2013) 82–88.
  41. Y.Q. Wang, T. Wang, Y.L. Su, F.B. Peng, H. Wu, Z.Y. Jiang, Remarkable reduction of irreversible fouling and improvement of the permeation properties of poly(ether sulfone) ultrafiltration membranes by blending with pluronic F127, Langmuir, 21 (2005) 11856–11862.
  42. K.A. Faneer, R. Rohani, A.W. Mohammad, Influence of pluronic addition on polyethersulfone membrane for xylitol recovery from biomass fermentation solution, J. Cleaner Prod., 171 (2018) 995–1005.
  43. Y. Zhang, X. Tong, B. Zhang, C. Zhang, H. Zhang, Y. Chen, Enhanced permeation and antifouling performance of polyvinyl chloride (PVC) blend Pluronic F127 ultrafiltration membrane by using salt coagulation bath (SCB), J. Membr. Sci., 548 (2018) 32–41.
  44. J.J. Qin, F.S. Wong, Hypochlorite treatment of hydrophilic hollow fiber ultrafiltration membranes for high fluxes, Desalination, 146 (2002) 307–309.
  45. Y. Ding, B. Bikson, Macro and meso porous polymeric materials from miscible polysulfone/polyimide blends by chemical decomposition of polyimides, Polymer, 51 (2010) 46–52.
  46. C. Wojciechowski, A. Chwojnowski, L. Granicka, E. Łukowska, Polysulfone/cellulose acetate blend semi degradable capillary membranes preparation and characterization, Desal. Water Treat., 64 (2017) 365–371.
  47. W. Sikorska, C. Wojciechowski, M. Przytulska, G. Rokicki, M. Wasyłeczko, J.L. Kulikowski, A. Chwojnowski, Polysulfone– polyurethane (PSf-PUR) blend partly degradable hollow fiber membranes: preparation, characterization, and computer image analysis, Desal. Water Treat., 128 (2018) 383–391.
  48. E. Pamuła, P. Dobrzyński, M. Bero, C. Paluszkiewicz, Hydrolytic degradation of porous scaffolds for tissue engineering from terpolymer of L-lactide, ε-caprolactone and glycolide, J. Mol. Struct., 744–747 (2005) 557–562.
  49. P. Dobrzynski, Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. III. Synthesis and chainmicrostructure analysis of terpolymer obtained from L-lactide, glycolide, and ε-caprolactone initiated by zirconium(IV) acetylacetonate, J. Polym. Sci., Part A: Polym. Chem., 40 (2002) 3129–3143.
  50. P. Dobrzynski, Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. II. Copolymerization of glycolide with ε-caprolactone initiated by zirconium(IV) acetylacetonate and zirconium(IV) chloride, J. Polym. Sci., Part A: Polym. Chem., 40 (2002) 1379–1394.