References

  1. T. Kowalkowski, M. Pastuszak, J. Igras, B. Buszewski, Differences in emission of nitrogen and phosphorus into the Vistula and Oder basins in 1995–2008—natural and anthropogenic causes (MONERIS model), J. Mar. Syst., 89 (2012) 48–60.
  2. C.N. Zhang, S.D. Wang, D. Sun, Z.K. Pan, A.G. Zhou, S.L. Xie, J. Wang, J.X. Zou, Microplastic pollution in surface water from east coastal areas of Guangdong, South China and preliminary study on microplastics biomonitoring using two marine fish, Chemosphere, 256 (2020) 127202, https://doi.org/10.1016/j.chemosphere.2020.127202.
  3. Y.Z. Huang, Q. Sui, S.G. Lyu, J.Q. Wang, S.X. Huang, W.T. Zhao, B. Wang, D.J. Xu, M. Kong, Y.M. Zhang, G. Yu, Tracking emission sources of PAHs in a region with pollution-intensive industries, Taihu Basin: from potential pollution sources to surface water, Environ. Pollut., 264 (2020) 114674, https://doi. org/10.1016/j.envpol.2020.114674.
  4. F. Wang, J. Li, D.J. Bian, W. Bian, L. Zhang, Z.B. Nie, Treatment of domestic wastewater in step-feeding anoxic/oxic activated sludge–biofilm system at low temperature: performance, removal characteristics, and community, Desal. Water Treat., 120 (2018) 150–157.
  5. L. He, F.-Y. Ji, X.-L. He, W.-W. Zhou, X. Xu, M.-S. Lai, Validation of accumulation models for inorganic suspended solids of different particle size in an activated sludge system, Bioresour. Technol., 149 (2013) 51–57.
  6. R.T. Hai, Y.Q. He, X.H. Wang, Y. Li, Simultaneous removal of nitrogen and phosphorus from swine wastewater in a sequencing batch biofilm reactor, Chin. J. Chem. Eng., 23 (2015) 303–308.
  7. S.N. Xu, D.L. Wu, Z.Q. Hu, Impact of hydraulic retention time on organic and nutrient removal in a membrane coupled sequencing batch reactor, Water Res., 55 (2014) 12–20.
  8. S.S. Ai, S.S. Dong, Z.B. Nie, S.Y. Zhu, Q.K. Ren, D.J. Bian, Study on aeration optimization and sewage treatment efficiency of a novel micro-pressure swirl reactor (MPSR), Water, 12 (2020) 890, doi: 10.3390/w12030890.
  9. D.J. Bian, D.D. Zhou, M.X. Huo, Q.K. Ren, X. Tian, L.G. Wan, S.Y. Zhu, S.S. Ai, Improving oxygen dissolution and distribution in a bioreactor with enhanced simultaneous COD and nitrogen removal by simply introducing micro-pressure and swirl, Appl. Microbiol. Biotechnol., 99 (2015) 8741–8749.
  10. Q.K. Ren, Y. Yu, S.Y. Zhu, D.J. Bian, M.X. Huo, D.D. Zhou, H.L. Huo, Characterization of a novel micro-pressure swirl reactor for removal of chemical oxygen demand and total nitrogen from domestic wastewater at low temperature, Biodegradation, 28 (2017) 145–157.
  11. B. Liu, X.L. Wang, Y.L. Liu, Y. Gao, Z. Ma, J.L. Xue, Simulation analysis of flow velocity and liquid film of saline wastewater in falling film evaporation, Environ. Technol. Innovation, 19 (2020) 100790, https://doi.org/10.1016/j.eti.2020.100790.
  12. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, 22nd ed., American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, D.C., 2007.
  13. C.X. Wang, Y.B. Wang, Y.L. Wang, K.-K. Cheung, F. Ju, Y. Xia, T. Zhang, Genome-centric microbiome analysis reveals solid retention time (SRT)-shaped species interactions and niche differentiation in food waste and sludge co-digesters, Water Res., 181 (2020) 115858, https://doi.org/10.1016/j.watres.2020.115858.
  14. Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant, China Environmental Science Press, Beijing, China, 2002.
  15. Y.Z. Peng, S.J. Ge, Enhanced nutrient removal in three types of step feeding process from municipal wastewater, Bioresour. Technol., 102 (2011) 6405–6413.
  16. N. Sundaresan, L. Philip, Performance evaluation of various aerobic biological systems for the treatment of domestic wastewater at low temperatures, Water Sci. Technol., 58 (2008) 819–830.
  17. D.H. Li, W.G. Li, K.L. Zhang, G.L. Zhang, H.Q. Zhang, D.Y. Zhang, P.F. Lv, J. Wu, Nutrient removal by full-scale Bi-Bio-Selector for nitrogen and phosphorus removal process treating urban domestic sewage at low C/N ratio and low temperature conditions, Process Saf. Environ. Prot., 140 (2020) 199–210.
  18. X. Zha, J. Ma, X.W. Lu, Use of a low-cost and energyefficient device for treating low-strength wastewater at low temperatures focusing on nitrogen removal and microbial community, Sci. Total Environ., 722 (2020) 137916, https://doi. org/10.1016/j.scitotenv.2020.137916.
  19. S.J. Ge, Y.P. Zhu, C.C. Lu, S.Y. Wang, Y.Z. Peng, Full-scale demonstration of step feed concept for improving an anaerobic/ anoxic/aerobic nutrient removal process, Bioresour. Technol., 120 (2012) 305–313.
  20. S.J. McIlroy, A. Starnawska, P. Starnawski, A.M. Saunders, M. Nierychlo, P.H. Nielsen, J.L. Nielsen, Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems, Environ. Microbiol., 18 (2016) 50–64.
  21. A. Cydzik-Kwiatkowska, M. Zielińska, Bacterial communities in full-scale wastewater treatment systems, World J. Microbiol. Biotechnol., 32 (2016) 66.
  22. Q. Kong, J. Zhang, M.S. Miao, L. Tian, N. Guo, S. Liang, Partial nitrification and nitrous oxide emission in an intermittently aerated sequencing batch biofilm reactor, Chem. Eng. J., 217 (2013) 435–441.
  23. I. Krustok, J. Truu, M. Odlare, M. Truu, T. Ligi, K. Tiirik, E. Nehrenheim, Effect of lake water on algal biomass and microbial community structure in municipal wastewaterbased lab-scale photobioreactors, Appl. Microbiol. Biotechnol., 99 (2015) 6537–6549.