References
- T. Huang, L.F. Liu, L.L. Zhou, S.W. Zhang, Electrokinetic
removal of chromium from chromite ore-processing residue
using graphite particle-supported nanoscale zero-valent iron
as the three-dimensional electrode, Chem. Eng. J., 350 (2018)
1022–1034.
- M.S. Samuel, J. Bhattacharya, S. Raj, N. Santhanam, H. Singh,
N.D.P. Singh, Efficient removal of chromium(VI) from aqueous
solution using chitosan grafted graphene oxide (CS-GO)
nanocomposite, Int. J. Biol. Macromol., 121 (2019) 285–292.
- C.G. Gao, X.L. Zhang, Y. Yuan, Y. Lei, J.T. Gao, S.J. Zhao,
C.Y. He, L.C. Deng, Removal of hexavalent chromium ions
by core-shell sand/Mg-layer double hydroxides (LDHs) in
constructed rapid infiltration system, Ecotoxicol. Environ. Saf.,
166 (2018) 285–293.
- J.E. Rager, M. Suh, G.A. Chappell, C.M. Thompson, D.M. Proctor,
Review of transcriptomic responses to hexavalent chromium
exposure in lung cells supports a role of epigenetic mediators
in carcinogenesis, Toxicol. Lett., 305 (2019) 40–50.
- W.L. Li, X.X. Xue, Effects of boron oxide addition on chromium
distribution and emission of hexavalent chromium in stainlesssteel
slag, Ind. Eng. Chem. Res., 57 (2018) 4731–4742.
- L.H. Nguyen, T.M.P. Nguyen, H.T. Van, X.H. Vu, T.L.A. Ha,
T.H.V. Nguyen, X.H. Nguyen, X.C. Nguyen, Treatment
of hexavalent chromium contaminated wastewater using
activated carbon derived from coconut shell loaded by silver
nanoparticles: batch experiment, Water Air Soil Pollut.,
230 (2019), doi: 10.1007/s11270-019-4119-8.
- D. Pradhan, L.B. Sukla, B.B. Mishra, N. Devi, Biosorption
for removal of hexavalent chromium using microalgae
Scenedesmus sp., J. Cleaner Prod., 209 (2019) 617–629.
- K. Rhoades, J. Eun, J.M. Tinjum, Transport of hexavalent
chromium in the vadose zone by capillary and evaporative
transport from chromium ore processing residue, Can.
Geotech. J., 53 (2016) 619–633.
- J.A. Korak, R.G. Huggins, M.S. Arias-Paic, Nanofiltration to
improve process efficiency of hexavalent chromium treatment
using ion exchange, J. Am. Water Works Assoc., 110 (2018)
E13–E26.
- W.Y. Duan, G.D. Chen, C.X. Chen, R. Sanghvi, A. Iddya,
S. Walker, H.Z. Liu, A. Ronen, D. Jassby, Electrochemical
removal of hexavalent chromium using electrically conducting
carbon nanotube/polymer composite ultrafiltration membranes,
J. Membr. Sci., 531 (2017) 160–171.
- A. Saravanan, P.S. Kumar, M. Yashwanthraj, Sequestration
of toxic Cr(VI) ions from industrial wastewater using waste
biomass: a review, Desal. Water Treat., 68 (2017) 245–266.
- H.P. Luo, H. Li, Y.B. Lu, G.L. Liu, R.D. Zhang, Treatment
of reverse osmosis concentrate using microbial electrolysis
desalination and chemical production cell, Desalination,
408 (2017) 52–59.
- E. Leiva, E. Leiva-Aravena, C. Rodriguez, J. Serrano, I. Vargas,
Arsenic removal mediated by acidic pH neutralization and
iron precipitation in microbial fuel cells, Sci. Total Environ.,
645 (2018) 471–481.
- R. Jobby, P. Jha, A.K. Yadav, N. Desai, Biosorption and
biotransformation of hexavalent chromium [Cr(VI)]: a
comprehensive review, Chemosphere, 207 (2018) 255–266.
- K.K. Raj, U.R. Sardar, E. Bhargavi, I. Devi, B. Bhunia, O.N. Tiwari,
Advances in exopolysaccharides based bioremediation of
heavy metals in soil and water: a critical review, Carbohydr.
Polym., 199 (2018) 353–364.
- Y. Yang, T.H. Chen, M. Sumona, B. Sen Gupta, Y.B. Sun,
Z.H. Hu, X.M. Zhan, Utilization of iron sulfides for wastewater
treatment: a critical review, Rev. Environ. Sci. Biotechnol.,
16 (2017) 289–308.
- A.K. Zeraatkar, H. Ahmadzadeh, A.F. Talebi, N.R. Moheimani,
M.P. McHenry, Potential use of algae for heavy metal
bioremediation, a critical review, J. Environ. Manage.,
181 (2016) 817–831.
- S. Bibi, A. Hussain, M. Hamayun, H. Rahman, A. Iqbal, M. Shah,
M. Irshad, M. Qasim, B. Islam, Bioremediation of hexavalent
chromium by endophytic fungi; safe and improved production
of Lactuca sativa L., Chemosphere, 211 (2018) 653–663.
- A.J. Phillips, E. Troyer, R. Hiebert, C. Kirkland, R. Gerlach,
A.B. Cunningham, L. Spangler, J. Kirksey, W. Rowe, R. Esposito,
Enhancing wellbore cement integrity with microbially induced
calcite precipitation (MICP): a field scale demonstration,
J. Pet. Sci. Eng., 171 (2018) 1141–1148.
- A.E. Torres-Aravena, C. Duarte-Nass, L. Azocar, R. Mella-
Herrera, M. Rivas, D. Jeison, Can microbially induced
calcite precipitation (MICP) through a ureolytic pathway be
successfully applied for removing heavy metals from wastewaters?,
Crystals, 8 (2018), doi: 10.3390/cryst8110438.
- Y. Al-Salloum, S. Hadi, H. Abbas, T. Almusallam, M.A. Moslem,
Bio-induction and bioremediation of cementitious composites
using microbial mineral precipitation - a review, Constr. Build.
Mater., 154 (2017) 857–876.
- D. Mujah, M.A. Shahin, L. Cheng, State-of-the-art review of
biocementation by microbially induced calcite precipitation
(MICP) for soil stabilization, Geomicrobiol. J., 34 (2017) 524–537.
- T. Huang, L.F. Liu, S.W. Zhang, Electrokinetic enhancement:
effect of sample stacking on strengthening heavy metal
removal in electrokinetic remediation of municipal solid waste
incineration fly ash, J. Environ. Eng., 145 (2019), doi: 10.1061/
(ASCE)EE.1943-7870.0001501.
- T. Huang, S.W. Zhang, L.F. Liu, Immobilization of trace heavy
metals in the electrokinetics-processed municipal solid waste
incineration fly ashes and its characterizations and mechanisms,
J. Environ. Manage., 232 (2019) 207–218.
- T. Huang, L.F. Liu, S.W. Zhang, J.J. Xu, Evaluation of
electrokinetics coupled with a reactive barrier of activated
carbon loaded with a nanoscale zero-valent iron for selenite
removal from contaminated soils, J. Hazard. Mater., 368 (2019)
104–114.
- Z. Hurak, F. Foret, On benchmark problems, challenges, and
competitions in electrokinetics - a review, Electrophoresis,
36 (2015) 1429–1431.
- Y.L. Liu, J. Zhang, H.J. He, Assessment of the Tessier and BCR
sequential extraction procedures for elemental partitioning of
Ca, Fe, Mn, Al, and Ti and their application to surface sediments
from Chinese continental shelf, Acta Oceanol. Sin., 37 (2018)
22–28.
- D. Rosado, J. Usero, J. Morillo, Ability of 3 extraction methods
(BCR, Tessier and protease K) to estimate bioavailable metals
in sediments from Huelva estuary (Southwestern Spain), Mar.
Pollut. Bull., 102 (2016) 65–71.
- L.M. Lun, D.W. Li, Y.J. Yin, D. Li, G.J. Xu, Z.Q. Zhao,
S. Li, Characterization of chromium waste form based on
biocementation by Microbacterium sp GM-1, Indian J. Microbiol.,
56 (2016) 353–360.
- T. Huang, S.W. Zhang, L.F. Liu, J.J. Xu, Graphite particle
electrodes that enhance the detoxification of municipal
solid waste incineration fly ashes in a three-dimensional
electrokinetic platform and its mechanisms, Environ. Pollut.,
243 (2018) 929–939.
- E.Z. Gomaa, Biosequestration of heavy metals by microbially
induced calcite precipitation of ureolytic bacteria, Rom.
Biotechnol. Lett., 24 (2019) 147–153.
- K.M. Darby, G.L. Hernandez, J.T. DeJong, R.W. Boulanger,
M.G. Gomez, D.W. Wilson, Centrifuge model testing of
liquefaction mitigation via microbially induced calcite
precipitation, J. Geotech. Geoenviron. Eng., 145 (2019),
doi: 10.1061/9780784481455.012.
- M. Oualha, S. Bibi, M. Sulaiman, N. Zouari, Microbially induced
calcite precipitation in calcareous soils by endogenous Bacillus
cereus, at high pH and harsh weather, J. Environ. Manage.,
257 (2020), doi: 10.1016/j.jenvman.2019.109965.
- A. Mahawish, A. Bouazza, W.P. Gates, Improvement of coarse
sand engineering properties by microbially induced calcite
precipitation, Geomicrobiol. J., 35 (2018) 887–897.