References

  1. T. Huang, L.F. Liu, L.L. Zhou, S.W. Zhang, Electrokinetic removal of chromium from chromite ore-processing residue using graphite particle-supported nanoscale zero-valent iron as the three-dimensional electrode, Chem. Eng. J., 350 (2018) 1022–1034.
  2. M.S. Samuel, J. Bhattacharya, S. Raj, N. Santhanam, H. Singh, N.D.P. Singh, Efficient removal of chromium(VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite, Int. J. Biol. Macromol., 121 (2019) 285–292.
  3. C.G. Gao, X.L. Zhang, Y. Yuan, Y. Lei, J.T. Gao, S.J. Zhao, C.Y. He, L.C. Deng, Removal of hexavalent chromium ions by core-shell sand/Mg-layer double hydroxides (LDHs) in constructed rapid infiltration system, Ecotoxicol. Environ. Saf., 166 (2018) 285–293.
  4. J.E. Rager, M. Suh, G.A. Chappell, C.M. Thompson, D.M. Proctor, Review of transcriptomic responses to hexavalent chromium exposure in lung cells supports a role of epigenetic mediators in carcinogenesis, Toxicol. Lett., 305 (2019) 40–50.
  5. W.L. Li, X.X. Xue, Effects of boron oxide addition on chromium distribution and emission of hexavalent chromium in stainlesssteel slag, Ind. Eng. Chem. Res., 57 (2018) 4731–4742.
  6. L.H. Nguyen, T.M.P. Nguyen, H.T. Van, X.H. Vu, T.L.A. Ha, T.H.V. Nguyen, X.H. Nguyen, X.C. Nguyen, Treatment of hexavalent chromium contaminated wastewater using activated carbon derived from coconut shell loaded by silver nanoparticles: batch experiment, Water Air Soil Pollut., 230 (2019), doi: 10.1007/s11270-019-4119-8.
  7. D. Pradhan, L.B. Sukla, B.B. Mishra, N. Devi, Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp., J. Cleaner Prod., 209 (2019) 617–629.
  8. K. Rhoades, J. Eun, J.M. Tinjum, Transport of hexavalent chromium in the vadose zone by capillary and evaporative transport from chromium ore processing residue, Can. Geotech. J., 53 (2016) 619–633.
  9. J.A. Korak, R.G. Huggins, M.S. Arias-Paic, Nanofiltration to improve process efficiency of hexavalent chromium treatment using ion exchange, J. Am. Water Works Assoc., 110 (2018) E13–E26.
  10. W.Y. Duan, G.D. Chen, C.X. Chen, R. Sanghvi, A. Iddya, S. Walker, H.Z. Liu, A. Ronen, D. Jassby, Electrochemical removal of hexavalent chromium using electrically conducting carbon nanotube/polymer composite ultrafiltration membranes, J. Membr. Sci., 531 (2017) 160–171.
  11. A. Saravanan, P.S. Kumar, M. Yashwanthraj, Sequestration of toxic Cr(VI) ions from industrial wastewater using waste biomass: a review, Desal. Water Treat., 68 (2017) 245–266.
  12. H.P. Luo, H. Li, Y.B. Lu, G.L. Liu, R.D. Zhang, Treatment of reverse osmosis concentrate using microbial electrolysis desalination and chemical production cell, Desalination, 408 (2017) 52–59.
  13. E. Leiva, E. Leiva-Aravena, C. Rodriguez, J. Serrano, I. Vargas, Arsenic removal mediated by acidic pH neutralization and iron precipitation in microbial fuel cells, Sci. Total Environ., 645 (2018) 471–481.
  14. R. Jobby, P. Jha, A.K. Yadav, N. Desai, Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: a comprehensive review, Chemosphere, 207 (2018) 255–266.
  15. K.K. Raj, U.R. Sardar, E. Bhargavi, I. Devi, B. Bhunia, O.N. Tiwari, Advances in exopolysaccharides based bioremediation of heavy metals in soil and water: a critical review, Carbohydr. Polym., 199 (2018) 353–364.
  16. Y. Yang, T.H. Chen, M. Sumona, B. Sen Gupta, Y.B. Sun, Z.H. Hu, X.M. Zhan, Utilization of iron sulfides for wastewater treatment: a critical review, Rev. Environ. Sci. Biotechnol., 16 (2017) 289–308.
  17. A.K. Zeraatkar, H. Ahmadzadeh, A.F. Talebi, N.R. Moheimani, M.P. McHenry, Potential use of algae for heavy metal bioremediation, a critical review, J. Environ. Manage., 181 (2016) 817–831.
  18. S. Bibi, A. Hussain, M. Hamayun, H. Rahman, A. Iqbal, M. Shah, M. Irshad, M. Qasim, B. Islam, Bioremediation of hexavalent chromium by endophytic fungi; safe and improved production of Lactuca sativa L., Chemosphere, 211 (2018) 653–663.
  19. A.J. Phillips, E. Troyer, R. Hiebert, C. Kirkland, R. Gerlach, A.B. Cunningham, L. Spangler, J. Kirksey, W. Rowe, R. Esposito, Enhancing wellbore cement integrity with microbially induced calcite precipitation (MICP): a field scale demonstration, J. Pet. Sci. Eng., 171 (2018) 1141–1148.
  20. A.E. Torres-Aravena, C. Duarte-Nass, L. Azocar, R. Mella- Herrera, M. Rivas, D. Jeison, Can microbially induced calcite precipitation (MICP) through a ureolytic pathway be successfully applied for removing heavy metals from wastewaters?, Crystals, 8 (2018), doi: 10.3390/cryst8110438.
  21. Y. Al-Salloum, S. Hadi, H. Abbas, T. Almusallam, M.A. Moslem, Bio-induction and bioremediation of cementitious composites using microbial mineral precipitation - a review, Constr. Build. Mater., 154 (2017) 857–876.
  22. D. Mujah, M.A. Shahin, L. Cheng, State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization, Geomicrobiol. J., 34 (2017) 524–537.
  23. T. Huang, L.F. Liu, S.W. Zhang, Electrokinetic enhancement: effect of sample stacking on strengthening heavy metal removal in electrokinetic remediation of municipal solid waste incineration fly ash, J. Environ. Eng., 145 (2019), doi: 10.1061/ (ASCE)EE.1943-7870.0001501.
  24. T. Huang, S.W. Zhang, L.F. Liu, Immobilization of trace heavy metals in the electrokinetics-processed municipal solid waste incineration fly ashes and its characterizations and mechanisms, J. Environ. Manage., 232 (2019) 207–218.
  25. T. Huang, L.F. Liu, S.W. Zhang, J.J. Xu, Evaluation of electrokinetics coupled with a reactive barrier of activated carbon loaded with a nanoscale zero-valent iron for selenite removal from contaminated soils, J. Hazard. Mater., 368 (2019) 104–114.
  26. Z. Hurak, F. Foret, On benchmark problems, challenges, and competitions in electrokinetics - a review, Electrophoresis, 36 (2015) 1429–1431.
  27. Y.L. Liu, J. Zhang, H.J. He, Assessment of the Tessier and BCR sequential extraction procedures for elemental partitioning of Ca, Fe, Mn, Al, and Ti and their application to surface sediments from Chinese continental shelf, Acta Oceanol. Sin., 37 (2018) 22–28.
  28. D. Rosado, J. Usero, J. Morillo, Ability of 3 extraction methods (BCR, Tessier and protease K) to estimate bioavailable metals in sediments from Huelva estuary (Southwestern Spain), Mar. Pollut. Bull., 102 (2016) 65–71.
  29. L.M. Lun, D.W. Li, Y.J. Yin, D. Li, G.J. Xu, Z.Q. Zhao, S. Li, Characterization of chromium waste form based on biocementation by Microbacterium sp GM-1, Indian J. Microbiol., 56 (2016) 353–360.
  30. T. Huang, S.W. Zhang, L.F. Liu, J.J. Xu, Graphite particle electrodes that enhance the detoxification of municipal solid waste incineration fly ashes in a three-dimensional electrokinetic platform and its mechanisms, Environ. Pollut., 243 (2018) 929–939.
  31. E.Z. Gomaa, Biosequestration of heavy metals by microbially induced calcite precipitation of ureolytic bacteria, Rom. Biotechnol. Lett., 24 (2019) 147–153.
  32. K.M. Darby, G.L. Hernandez, J.T. DeJong, R.W. Boulanger, M.G. Gomez, D.W. Wilson, Centrifuge model testing of liquefaction mitigation via microbially induced calcite precipitation, J. Geotech. Geoenviron. Eng., 145 (2019), doi: 10.1061/9780784481455.012.
  33. M. Oualha, S. Bibi, M. Sulaiman, N. Zouari, Microbially induced calcite precipitation in calcareous soils by endogenous Bacillus cereus, at high pH and harsh weather, J. Environ. Manage., 257 (2020), doi: 10.1016/j.jenvman.2019.109965.
  34. A. Mahawish, A. Bouazza, W.P. Gates, Improvement of coarse sand engineering properties by microbially induced calcite precipitation, Geomicrobiol. J., 35 (2018) 887–897.