References

  1. A. Fujishima, X.T. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63 (2008) 515–582.
  2. R. Saravanan, E. Sacari, F. Gracia, M.M. Khan, E. Mosquera, V.K. Gupta, Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes, J. Mol. Liq., 221 (2016) 1029–1033.
  3. W.J. Ren, Z.H. Ai, F.L. Jia, L.Z. Zhang, X.X. Fan, Z.G. Zou, Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2, Appl. Catal., B, 69 (2007) 138–144.
  4. H. Seema, K.C. Kemp, V. Chandra, K.S. Kim, Graphene–SnO2 composites for highly efficient photocatalytic degradation of Methylene blue under sunlight, Nanotechnology, 23 (2012) 355705, doi: 10.1088/0957-4484/23/35/355705.
  5. Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption, Adv. Mater., 28 (2016) 486–490.
  6. J.X. Low, B. Cheng, J.G. Yu, Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review, Appl. Surf. Sci., 392 (2017) 658–686.
  7. K. Li, S.M. Gao, Q.Y. Wang, H. Xu, Z.Y. Wang, B.B. Huang, Y. Dai, J. Lu, In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation, ACS Appl. Mater. Interfaces, 7 (2015) 9023–9030.
  8. J.L. Zhang, L.S. Zhang, X.F. Shen, P.F. Xu, J.S. Liu, Synthesis of BiOBr/WO3 p–n heterojunctions with enhanced visible light photocatalytic activity, Cryst. Eng. Commun., 18 (2016) 3856–3865.
  9. S.G. Babu, R. Vinoth, P.S. Narayana, D. Bahnemann, B. Neppolian, Reduced graphene oxide wrapped Cu2O supported on C3N4: an efficient visible light responsive semiconductor photocatalyst, APL Mater., 3 (2015) 104415, https://doi.org/10.1063/1.4928286.
  10. S.G. Kumar, K.S.R. Koteswara Rao, Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO), Appl. Surf. Sci., 391 (2017) 124–148.
  11. T.S. Natarajan, K. Natarajan, H.C. Bajaj, R.J. Tayade, Energy efficient UV-LED source and TiO2 nanotube array-based reactor for photocatalytic application, Ind. Eng. Chem. Res., 50 (2011) 7753–7762.
  12. H.L. Wang, L.S. Zhang, Z.G. Chen, J.Q. Hu, S.J. Li, Z.H. Wang, J.S. Liu, X.C. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chem. Soc. Rev., 43 (2014) 5234–5244.
  13. W.D. Chemelewski, O. Mabayoje, D. Tang, A.J.E. Rettie, C. Buddie Mullins, Bandgap engineering of Fe2O3 with Cr -application to photoelectrochemical oxidation, Phys. Chem. Chem. Phys., 18 (2016) 1644–1648.
  14. M.B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J.S. Thakur, G. Lawes, R. Naik, V.M. Naik, P.P. Vaishnava, Bandgap engineering by tuning particle size and crystallinity of SnO2–Fe2O3 nanocrystalline composite thin films, Appl. Phys. Lett., 93 (2008) 231909, https://doi.org/10.1063/1.3042163.
  15. A.D. Bokare, W.Y. Choi, Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes, J. Hazard. Mater., 275 (2014) 121–135.
  16. M. Mishra, D.-M. Chun, α-Fe2O3 as a photocatalytic material: a review, Appl. Catal., A, 498 (2015) 126–141.
  17. X.J. She, J.J. Wu, H. Xu, J. Zhong, Y. Wang, Y.H. Song, K.Q. Nie, Y. Liu, Y.C. Yang, M.-T.F. Rodrigues, R. Vajtai, J. Lou, D.L. Du, H.M. Li, P.M. Ajayan, High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts, Adv. Energy Mater., 7 (2017) 1700025, https://doi.org/10.1002/ aenm.201700025.
  18. J. Liu, S.L. Yang, W. Wu, Q.Y. Tian, S.Y. Cui, Z.G. Dai, F. Ren, X.H. Xiao, C.Z. Jiang, 3D flowerlike α-Fe2O3@TiO2 core–shell nanostructures: general synthesis and enhanced photocatalytic performance, ACS Sustainable Chem. Eng., 3 (2015) 2975–2984.
  19. Y.Y. Liu, W. Jin, Y.P. Zhao, G.S. Zhang, W. Zhang, Enhanced catalytic degradation of Methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions, Appl. Catal., B, 206 (2017) 642–652.
  20. J. Zhao, Q.F. Lu, M.Z. Wei, C.Q. Wang, Synthesis of onedimensional α-Fe2O3/Bi2MoO6 heterostructures by electrospinning process with enhanced photocatalytic activity, J. Alloys Compd., 646 (2015) 417–424.
  21. S.C. Siah, Y.S. Lee, Y. Segal, T. Buonassisi, Low contact resistivity of metals on nitrogen-doped cuprous oxide (Cu2O) thin-films, J. Appl. Phys., 112 (2012) 084508, https://doi. org/10.1063/1.4758305.
  22. Z.K. Zheng, B.B. Huang, Z.Y. Wang, M. Guo, X.Y. Qin, X.Y. Zhang, P. Wang, Y. Dai, Crystal faces of Cu2O and their stabilities in photocatalytic reactions, J. Phys. Chem. C, 113 (2009) 462–470.
  23. H.Y. Zheng, Q. Li, Y.P. Zhang, L.Z. Qin, H. Lin, M. Nie, Convenient and green soft chemical route to cuprous oxide films and their visible-light photocatalytic properties, Micro Nano Lett., 10 (2015) 554–557.
  24. M.A. Nguyen, N.M. Bedford, Y. Ren, E.M. Zahran, R.C. Goodin, F.F. Chagani, L.G. Bachas, M.R. Knecht, Direct synthetic control over the size, composition, and photocatalytic activity of octahedral copper oxide materials: correlation between surface structure and catalytic functionality, ACS Appl. Mater. Interfaces, 7 (2015) 13238–13250.
  25. S.T. Ren, G.L. Zhao, Y.Y. Wang, B.Y. Wang, Q. Wang, Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu2O nanorod films: the distinct role of Ag NPs in the visible light and UV region, Nanotechnology, 26 (2015) 125403, doi: 10.1088/0957-4484/26/12/125403.
  26. J.-C. Wang, L. Zhang, W.-X. Fang, J. Ren, Y.-Y. Li, H.-C. Yao, J.-S. Wang, Z.-J. Li, Enhanced photoreduction CO2 activity over direct Z-scheme α-Fe2O3/Cu2O heterostructures under visible light irradiation, ACS Appl. Mater. Interfaces, 7 (2015) 8631–8639.
  27. S.K. Lakhera, A. Watts, H.Y. Hafeez, B. Neppolian, Interparticle double charge transfer mechanism of heterojunction α-Fe2O3/Cu2O mixed oxide catalysts and its visible light photocatalytic activity, Catal. Today, 300 (2018) 58–70.
  28. H.L. Xu, W.Z. Wang, Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall, Angew. Chem. Int. Ed., 46 (2007) 1489–1492.
  29. H. Meng, W. Yang, K. Ding, L. Feng, Y.F. Guan, Cu2O nanorods modified by reduced graphene oxide for NH3 sensing at room temperature, J. Mater. Chem. A, 3 (2015) 1174–1181.
  30. S.W. Lee, Y.S. Lee, J.Y. Heo, S.C. Siah, D. Chua, R.E. Brandt, S.B. Kim, J.P. Mailoa, T. Buonassisi, R.G. Gordon, Improved Cu2O-based solar cells using atomic layer deposition to control the Cu oxidation state at the p–n junction, Adv. Energy Mater., 4 (2014) 1301916, https://doi.org/10.1002/aenm.201301916.
  31. M. Yin, C.-K. Wu, Y.B. Lou, C. Burda, J.T. Koberstein, Y.M. Zhu, S. O’Brien, Copper oxide nanocrystals, J. Am. Chem. Soc., 127 (2005) 9506–9511.
  32. Y.K. Kwon, A.S. Soon, H.S. Han, H.J. Lee, Shape effects of cuprous oxide particles on stability in water and photocatalytic water splitting, J. Mater. Chem. A, 3 (2015) 156–162.