References
- A. Fujishima, X.T. Zhang, D.A. Tryk, TiO2 photocatalysis and
related surface phenomena, Surf. Sci. Rep., 63 (2008) 515–582.
- R. Saravanan, E. Sacari, F. Gracia, M.M. Khan, E. Mosquera,
V.K. Gupta, Conducting PANI stimulated ZnO system for
visible light photocatalytic degradation of coloured dyes,
J. Mol. Liq., 221 (2016) 1029–1033.
- W.J. Ren, Z.H. Ai, F.L. Jia, L.Z. Zhang, X.X. Fan, Z.G. Zou,
Low temperature preparation and visible light photocatalytic
activity of mesoporous carbon-doped crystalline TiO2, Appl.
Catal., B, 69 (2007) 138–144.
- H. Seema, K.C. Kemp, V. Chandra, K.S. Kim, Graphene–SnO2
composites for highly efficient photocatalytic degradation of
Methylene blue under sunlight, Nanotechnology, 23 (2012)
355705, doi: 10.1088/0957-4484/23/35/355705.
- Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang,
R.C. Che, CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres
with strong wideband microwave absorption, Adv. Mater.,
28 (2016) 486–490.
- J.X. Low, B. Cheng, J.G. Yu, Surface modification and enhanced
photocatalytic CO2 reduction performance of TiO2: a review,
Appl. Surf. Sci., 392 (2017) 658–686.
- K. Li, S.M. Gao, Q.Y. Wang, H. Xu, Z.Y. Wang, B.B. Huang,
Y. Dai, J. Lu, In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance
under LED light irradiation, ACS Appl. Mater. Interfaces,
7 (2015) 9023–9030.
- J.L. Zhang, L.S. Zhang, X.F. Shen, P.F. Xu, J.S. Liu, Synthesis
of BiOBr/WO3 p–n heterojunctions with enhanced visible
light photocatalytic activity, Cryst. Eng. Commun., 18 (2016)
3856–3865.
- S.G. Babu, R. Vinoth, P.S. Narayana, D. Bahnemann,
B. Neppolian, Reduced graphene oxide wrapped Cu2O
supported on C3N4: an efficient visible light responsive
semiconductor photocatalyst, APL Mater., 3 (2015) 104415,
https://doi.org/10.1063/1.4928286.
- S.G. Kumar, K.S.R. Koteswara Rao, Comparison of modification
strategies towards enhanced charge carrier separation and
photocatalytic degradation activity of metal oxide semiconductors
(TiO2, WO3 and ZnO), Appl. Surf. Sci., 391 (2017)
124–148.
- T.S. Natarajan, K. Natarajan, H.C. Bajaj, R.J. Tayade, Energy
efficient UV-LED source and TiO2 nanotube array-based reactor
for photocatalytic application, Ind. Eng. Chem. Res., 50 (2011)
7753–7762.
- H.L. Wang, L.S. Zhang, Z.G. Chen, J.Q. Hu, S.J. Li,
Z.H. Wang, J.S. Liu, X.C. Wang, Semiconductor heterojunction
photocatalysts: design, construction, and photocatalytic performances,
Chem. Soc. Rev., 43 (2014) 5234–5244.
- W.D. Chemelewski, O. Mabayoje, D. Tang, A.J.E. Rettie,
C. Buddie Mullins, Bandgap engineering of Fe2O3 with Cr -application to photoelectrochemical oxidation, Phys. Chem.
Chem. Phys., 18 (2016) 1644–1648.
- M.B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J.S. Thakur,
G. Lawes, R. Naik, V.M. Naik, P.P. Vaishnava, Bandgap
engineering by tuning particle size and crystallinity of
SnO2–Fe2O3 nanocrystalline composite thin films, Appl.
Phys. Lett., 93 (2008) 231909, https://doi.org/10.1063/1.3042163.
- A.D. Bokare, W.Y. Choi, Review of iron-free Fenton-like systems
for activating H2O2 in advanced oxidation processes, J. Hazard.
Mater., 275 (2014) 121–135.
- M. Mishra, D.-M. Chun, α-Fe2O3 as a photocatalytic material: a
review, Appl. Catal., A, 498 (2015) 126–141.
- X.J. She, J.J. Wu, H. Xu, J. Zhong, Y. Wang, Y.H. Song,
K.Q. Nie, Y. Liu, Y.C. Yang, M.-T.F. Rodrigues, R. Vajtai, J. Lou,
D.L. Du, H.M. Li, P.M. Ajayan, High efficiency photocatalytic
water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts,
Adv. Energy Mater., 7 (2017) 1700025, https://doi.org/10.1002/
aenm.201700025.
- J. Liu, S.L. Yang, W. Wu, Q.Y. Tian, S.Y. Cui, Z.G. Dai, F. Ren,
X.H. Xiao, C.Z. Jiang, 3D flowerlike α-Fe2O3@TiO2 core–shell
nanostructures: general synthesis and enhanced photocatalytic
performance, ACS Sustainable Chem. Eng., 3 (2015) 2975–2984.
- Y.Y. Liu, W. Jin, Y.P. Zhao, G.S. Zhang, W. Zhang, Enhanced
catalytic degradation of Methylene blue by α-Fe2O3/graphene
oxide via heterogeneous photo-Fenton reactions, Appl. Catal.,
B, 206 (2017) 642–652.
- J. Zhao, Q.F. Lu, M.Z. Wei, C.Q. Wang, Synthesis of onedimensional
α-Fe2O3/Bi2MoO6 heterostructures by electrospinning
process with enhanced photocatalytic activity,
J. Alloys Compd., 646 (2015) 417–424.
- S.C. Siah, Y.S. Lee, Y. Segal, T. Buonassisi, Low contact
resistivity of metals on nitrogen-doped cuprous oxide (Cu2O)
thin-films, J. Appl. Phys., 112 (2012) 084508, https://doi.
org/10.1063/1.4758305.
- Z.K. Zheng, B.B. Huang, Z.Y. Wang, M. Guo, X.Y. Qin, X.Y. Zhang,
P. Wang, Y. Dai, Crystal faces of Cu2O and their stabilities in
photocatalytic reactions, J. Phys. Chem. C, 113 (2009) 462–470.
- H.Y. Zheng, Q. Li, Y.P. Zhang, L.Z. Qin, H. Lin, M. Nie,
Convenient and green soft chemical route to cuprous oxide
films and their visible-light photocatalytic properties, Micro
Nano Lett., 10 (2015) 554–557.
- M.A. Nguyen, N.M. Bedford, Y. Ren, E.M. Zahran, R.C. Goodin,
F.F. Chagani, L.G. Bachas, M.R. Knecht, Direct synthetic
control over the size, composition, and photocatalytic activity
of octahedral copper oxide materials: correlation between
surface structure and catalytic functionality, ACS Appl. Mater.
Interfaces, 7 (2015) 13238–13250.
- S.T. Ren, G.L. Zhao, Y.Y. Wang, B.Y. Wang, Q. Wang, Enhanced
photocatalytic performance of sandwiched ZnO@Ag@Cu2O
nanorod films: the distinct role of Ag NPs in the visible
light and UV region, Nanotechnology, 26 (2015) 125403,
doi: 10.1088/0957-4484/26/12/125403.
- J.-C. Wang, L. Zhang, W.-X. Fang, J. Ren, Y.-Y. Li, H.-C. Yao,
J.-S. Wang, Z.-J. Li, Enhanced photoreduction CO2 activity
over direct Z-scheme α-Fe2O3/Cu2O heterostructures under
visible light irradiation, ACS Appl. Mater. Interfaces, 7 (2015)
8631–8639.
- S.K. Lakhera, A. Watts, H.Y. Hafeez, B. Neppolian, Interparticle
double charge transfer mechanism of heterojunction α-Fe2O3/Cu2O mixed oxide catalysts and its visible light photocatalytic
activity, Catal. Today, 300 (2018) 58–70.
- H.L. Xu, W.Z. Wang, Template synthesis of multishelled Cu2O
hollow spheres with a single-crystalline shell wall, Angew.
Chem. Int. Ed., 46 (2007) 1489–1492.
- H. Meng, W. Yang, K. Ding, L. Feng, Y.F. Guan, Cu2O nanorods
modified by reduced graphene oxide for NH3 sensing at room
temperature, J. Mater. Chem. A, 3 (2015) 1174–1181.
- S.W. Lee, Y.S. Lee, J.Y. Heo, S.C. Siah, D. Chua, R.E. Brandt,
S.B. Kim, J.P. Mailoa, T. Buonassisi, R.G. Gordon, Improved
Cu2O-based solar cells using atomic layer deposition to control
the Cu oxidation state at the p–n junction, Adv. Energy Mater.,
4 (2014) 1301916, https://doi.org/10.1002/aenm.201301916.
- M. Yin, C.-K. Wu, Y.B. Lou, C. Burda, J.T. Koberstein,
Y.M. Zhu, S. O’Brien, Copper oxide nanocrystals, J. Am. Chem.
Soc., 127 (2005) 9506–9511.
- Y.K. Kwon, A.S. Soon, H.S. Han, H.J. Lee, Shape effects of
cuprous oxide particles on stability in water and photocatalytic
water splitting, J. Mater. Chem. A, 3 (2015) 156–162.