References
- I. Mohmood, C.B. Lopes, I. Lopes, I. Ahmad, A.C. Duarte,
E. Pereira, Nanoscale materials and their use in water
contaminants removal—a review, Environ. Sci. Pollut. Res.,
20 (2013) 1239–1260.
- S. Naidoo, A.O. Olaniran, Treated wastewater effluent as a
source of microbial pollution of surface water resources, Int. J.
Environ. Res. Public Health, 11 (2014) 249–270.
- L. Tan, S.X. Ning, X.W. Zhang, S.N. Shi, Aerobic decolorization
and degradation of azo dyes by growing cells of a newly
isolated yeast Candida tropicalis TL-F1, Bioresour. Technol.,
138 (2013) 307–313.
- E. Bizani, K. Fytianos, I. Poulios, V. Tsiridis, Photocatalytic
decolorization and degradation of dye solutions and
wastewaters in the presence of titanium dioxide, J. Hazard.
Mater., 136 (2006) 85–94.
- Z.P. Cao, J.H. Zhang, J.L. Zhang, H.W. Zhang, Degradation
pathway and mechanism of Reactive Brilliant Red X-3B in
electro-assisted microbial system under anaerobic condition,
J. Hazard. Mater., 329 (2017) 159–165.
- S.S. Swati, A.N. Faruqui, Investigation on ecological parameters
and COD minimization of textile effluent generated after
dyeing with mono and bi-functional reactive dyes, Environ.
Technol. Innovation, 11 (2018) 165–173.
- J. Wang, Y.N. Yan, L.L. Tian, Q.M. Wang, Y. Zhang, W.Q. Cao,
C. Yang, Efficient electrochemical oxidation of charged cryogel
adsorbed reactive dyes in non-aqueous media, Water
Air Soil Pollut., 229 (2018) 180, https://doi.org/10.1007/
s11270-018-3833-y.
- R.D. Saini, Textile organic dyes: polluting effects and
elimination methods from textile waste water, Int. J. Eng. Sci.,
9 (2017) 121–136.
- C.M. So, M.Y. Cheng, J.C. Yu, P.K. Wong, Degradation of azo dye
Procion Red MX-5B by photocatalytic oxidation, Chemosphere,
46 (2002) 905–912.
- J. Grzechulska, A.W. Morawski, Photocatalytic decomposition
of azo-dye acid black 1 in water over modified titanium dioxide,
Appl. Catal., B, 36 (2002) 45–51.
- S.C. Kwon, M.H. Fan, A.T. Cooper, H.Q. Yang, Photocatalytic
applications of micro- and nano-TiO2 in environmental
engineering, Crit. Rev. Env. Sci. Technol., 38 (2008) 197–226.
- K.M. Reza, A.S.W. Kurny, F. Gulshan, Parameters affecting the
photocatalytic degradation of dyes using TiO2: a review, Appl.
Water Sci., 7 (2017) 1569–1578.
- M.Y. Ghaly, T.S. Jamil, I.E. EI-Seesy, E.R. Souaya, R.A. Nasr,
Treatment of highly polluted paper mill wastewater by solar
photocatalytic oxidation with synthesized nano-TiO2, Chem.
Eng. J., 168 (2011) 446–454.
- A. Zaleska, Doped-TiO2: a review, Recent Pat. Eng., 2 (2008)
157–164.
- A.R. Khataee, V. Vatanpour, A.R. Amani Ghadim, Decolorization
of C.I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton,
Fenton-like, electro-Fenton and electrocoagulation processes: a
comparative study, J. Hazard. Mater., 161 (2009) 1225–1233.
- Y. Kuwahara, T. Kamegawa, K. Mori, H. Yamashita, Design
of new functional titanium oxide-based photocatalysts for
degradation of organics diluted in water and air, Curr. Org.
Chem., 14 (2010) 616–629.
- N. Taoufik, A. Elmchaouri, F. Anouar, S.A. Korili, A. Gil,
Improvement of the adsorption properties of an activated
carbon coated by titanium dioxide for the removal of emerging
contaminants, J. Water Process Eng., 31 (2019) 100876, https://
doi.org/10.1016/j.jwpe.2019.100876.
- D.M. Chen, Q. Zhu, F.S. Zhou, X.T. Deng, F.T. Li, Synthesis
and photocatalytic performances of the TiO2 pillared
montmorillonite, J. Hazard. Mater., 235 (2012) 186–193.
- K. Ikeue, H. Yamashita, M. Anpo, T. Takewaki, Photocatalytic
reduction of CO2 with H2O on Ti−β zeolite photocatalysts: effect
of the hydrophobic and hydrophilic properties, J. Phys. Chem.,
B, 105 (2001) 8350–8355.
- M.A. Fox, K.E. Doan, M.T. Dulay, The effect of the “Inert”
support on relative photocatalytic activity in the oxidative
decomposition of alcohols on irradiated titanium dioxide
composites, Res. Chem. Intermed., 20 (1994) 711, https://doi.
org/10.1163/156856794X00504.
- Y.J. Li, X.D. Li, J.W. Li, J. Yin, Photocatalytic degradation of
methyl orange by TiO2-coated activated carbon and kinetic
study, Water Res., 40 (2006) 1119–1126.
- J.-H. Sun, Y.-K. Wang, R.-X. Sun, S.-Y. Dong, Photodegradation
of azo dye Congo Red from aqueous solution by the WO3–TiO2/activated carbon (AC) photocatalyst under the UV irradiation,
Mater. Chem. Phys., 115 (2009) 303–308.
- M. Asiltürk, S. Şener, TiO2-activated carbon photocatalysts:
preparation, characterization and photocatalytic activities,
Chem. Eng. J., 180 (2012) 354–363.
- R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Enhanced photocatalytic
activity of TiO2-coated NaY and HY zeolites for the degradation
of methylene blue in water, Ind. Eng. Chem. Res., 46 (2007)
369–376.
- S.F. Chen, Y.Z. Liu, Study on the photocatalytic degradation
of glyphosate by TiO2 photocatalyst, Chemosphere, 67 (2007)
1010–1017.
- M.V. Bosco, M. Garrido, M.S. Larrechi, Determination of phenol
in the presence of its principal degradation products in water
during a TiO2-photocatalytic degradation process by threedimensional
excitation–emission matrix fluorescence and
parallel factor analysis, Anal. Chim. Acta, 559 (2006) 240–247.
- A. Witek-Krowiak, K. Chojnacka, D. Podstawczyk, A. Dawiec,
K. Pokomeda, Application of response surface methodology
and artificial neural network methods in modelling and
optimization of biosorption process, Bioresour. Technol.,
160 (2014) 150–160.
- Y.H. Tan, M.O. Abdullah, C. Nolasco-Hipolito, N.S.A. Zauzi,
Application of RSM and Taguchi methods for optimizing
the transesterification of waste cooking oil catalyzed by solid
ostrich and chicken-eggshell derived CaO, Renewable Energy,
114 (2017) 437–447.
- J.A. Pinto, M.A. Prieto, I.C.F.R. Ferreira, M.N. Belgacem,
A.E. Rodrigues, M.F. Barreiro, Analysis of the oxypropylation
process of a lignocellulosic material, almond shell, using
the response surface methodology (RSM), Ind. Crops Prod.,
153 (2020) 112542, https://doi.org/10.1016/j.indcrop.2020.112542.
- M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar,
L.A. Escaleira, Response surface methodology (RSM) as a tool
for optimization in analytical chemistry, Talanta, 76 (2008)
965–977.
- U. Natarajan, P.R. Periyanan, S.H. Yang, Multiple-response
optimization for micro-endmilling process using response
surface methodology, Int. J. Adv. Manuf. Technol., 56 (2011)
177–185.
- S. Daneshgar, P.A. Vanrolleghem, C. Vaneeckhaute, A. Buttafava,
A.G. Capodaglio, Optimization of P compounds recovery from
aerobic sludge by chemical modeling and response surface
methodology combination, Sci. Total Environ., 668 (2019)
668–677.
- G.J. Swamy, A. Sangamithra, V. Chandrasekar, Response surface
modeling and process optimization of aqueous extraction of
natural pigments from Beta vulgaris using Box–Behnken design
of experiments, Dyes Pigm., 111 (2014) 64–74.
- R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response
Surface Methodology: Process and Product Optimization Using
Designed Experiments, JWA, America, 2016.
- F. Geyikçi, E. Kılıç, S. Çoruh, S. Elevli, Modelling of lead
adsorption from industrial sludge leachate on red mud by
using RSM and ANN, Chem. Eng. J., 183 (2012) 53–59.
- M. Boumaaza, A. Belaadi, M. Bourchak, The effect of alkaline
treatment on mechanical performance of natural fibersreinforced
plaster: optimization using RSM, J. Nat. Fibers (2020)
1–21, https://doi.org/10.1080/15440478.2020.1724236.
- X.K. Li, L.X. Yang, Y. Zhang, W.J. Zhang, Polyethylene glycol
in sol-gel precursor to prepare porous Gd2Ti2O7: enhanced
photocatalytic activity on Reactive Brilliant Red X-3B
degradation, Mater. Sci. Semicond. Process., 117 (2020) 105181,
https://doi.org/10.1016/j.mssp.2020.105181.
- H. Deng, Y.H. Wang, X.C. Zhang, X.Q. Kou, B. Chen, C.C. Zhu,
Photodegradation under natural indoor weak light assisted
adsorption of X-3B on TiO2/Al2O3 nanocomposite, Chem. Eng.
J., 372 (2019) 99–106.
- V. Kumar, P. Saharan, A.K. Sharma, A. Umar, I. Kaushal,
A. Mittal, Y. Al-Hadeethi, B. Rashad, Silver doped manganese
oxide-carbon nanotube nanocomposite for enhanced dyesequestration:
isotherm studies and RSM modelling approach,
Ceram. Int., 54 (2020) 109–116.
- A.G. Khorram, N. Fallah, Treatment of textile dyeing factory
wastewater by electrocoagulation with low sludge settling time:
optimization of operating parameters by RSM, J. Environ. Eng.,
6 (2018) 635–642.