References
- F. Frank, E. Viglizzo, Water use in rain-fed farming at different
scales in the Pampas of Argentina, Agric. Syst., 109 (2012)
35–42.
- B. Biazin, G. Sterk, M. Temesgen, A. Abdulkedir, L. Stroosnijder,
Rainwater harvesting and management in rainfed agricultural
systems in sub-Saharan Africa – a review, Phys. Chem. Earth
Parts A/B/C, 47–48 (2012) 139–151.
- S. Dercon, L. Christiaensen, Consumption Risk, Technology
Adoption and Poverty Traps: Evidence from Ethiopia, World
Bank Policy Research Working Paper 4257, SSRN Electronic
Journal, 2008.
- S.D. Falco, J.P. Chavas, On crop biodiversity, risk exposure, and
food security in the highlands of Ethiopia, Am. J. Agric. Econ.,
91 (2009) 599–611.
- M. Amare, N.D. Jensen, B. Shiferaw, J.D. Cissé, Rainfall shocks
and agricultural productivity: implication for rural household
consumption, Agric. Syst., 166 (2018) 79–89.
- O.E. Olayide, T. Alabi, Between rainfall and food poverty:
assessing vulnerability to climate change in an agricultural
economy, J. Cleaner Prod., 198 (2018) 1–10.
- O.E. Olayide, I.K. Tetteh, L. Popoola, Differential impacts of
rainfall and irrigation on agricultural production in Nigeria: any
lessons for climate-smart agriculture?, Agric. Water Manage.,
178 (2016) 30–36.
- A.F. Ribeiro, A. Russo, C.M. Gouveia, P. Páscoa, Copulabased
agricultural drought risk of rainfed cropping systems,
Agric. Water Manage., 223 (2019) 105689, doi: 10.1016/j.
agwat.2019.105689.
- National Bureau of Statistics. Contributions to Gross Domestic
Products. Available at: http://nigerianstat.gov.ng (Accessed
February 16, 2020)
- H. Fjelde, N.V. Uexkull, Climate triggers: rainfall anomalies,
vulnerability and communal conflict in Sub-Saharan Africa,
Political Geogr., 31 (2012) 444–453.
- W. Sha, K. Edwards, The use of artificial neural networks
in materials science based research, Mater. Des., 28 (2007)
1747–1752.
- F.S. Mjalli, S. Al-Asheh, H. Alfadala, Use of artificial neural
network black-box modeling for the prediction of wastewater
treatment plants performance, J. Environ. Manage., 83 (2007)
329–338.
- S.C. Keat, B.B. Chun, L.H. San, M.Z.M. Jafri, Multiple regression
analysis in modelling of carbon dioxide emissions by energy
consumption use in Malaysia, AIP Conf. Proc., 1657 (2015) 1–5,
doi: 10.1063/1.4915185.
- H.D. Purnomo, K.D. Hartomo, S.Y.J. Prasetyo, Artificial
neural network for monthly rainfall rate prediction,
IOP Conf. Ser.: Mater. Sci. Eng., 180 (2017) 1–9, doi:
10.1088/1757-899X/180/1/012057.
- T.S. Abdulkadir, A.W. Salami, A.S. Aremu, A.M. Ayanshola,
D.O. Oyejobi, Assessment of neural networks performance in
modeling rainfall amounts, J. Res. For. Wildl. Environ., 9 (2017)
12–22.
- A.M. Bagirov, A. Mahmood, A. Barton, Prediction of monthly
rainfall in Victoria, Australia: clusterwise linear regression
approach, Atmos. Res., 188 (2017) 20–29.
- T. Kashiwao, K. Nakayama, S. Ando, K. Ikeda, M. Lee,
A. Bahadori, A neural network-based local rainfall prediction
system using meteorological data on the internet: a case study
using data from the Japan Meteorological Agency, Appl. Soft
Comput., 56 (2017) 317–330.
- Y. Xiang, L. Gou, L. He, S. Xia, W. Wang, A SVR–ANN combined
model based on ensemble EMD for rainfall prediction, Appl.
Soft Comput., 73 (2018) 874–883.
- R. Mirabbasi, O. Kisi, H. Sanikhani, S.G. Meshram, Monthly
long-term rainfall estimation in Central India using M5Tree,
MARS, LSSVR, ANN and GEP models, Neural Comput. Appl.,
31 (2018) 6843–6862.
- M. Zeynoddin, H. Bonakdari, A. Azari, I. Ebtehaj, B. Gharabaghi,
H.R. Madavar, Novel hybrid linear stochastic with non-linear
extreme learning machine methods for forecasting monthly
rainfall a tropical climate, J. Environ. Manage., 222 (2018)
190–206.
- A. Bello, M. Mamman, Monthly rainfall prediction using
artificial neural network: a case study of Kano, Nigeria, Environ.
Earth Sci. Res. J., 5 (2018) 37–41.
- N. Rodi, M. Malek, A. Ismail, Monthly rainfall prediction model
of peninsular Malaysia using clonal selection algorithm, Int. J.
Eng. Technol., 7 (2018) 182–185.
- S. Hudnurkar, N. Rayavarapu, Performance of Artificial Neural
Network in Now Casting Summer Monsoon Rainfall: A Case
Study, Conference: IEEE Punecon, Pune, 2018.
- E.E. Peter, E.E. Precious, Skill comparison of multiple-linear
regression model and artificial neural network model in
seasonal rainfall prediction-north east Nigeria, Asian Res. J.
Math., 11 (2018) 1–10.
- S. Chattopadhyay, G. Chattopadhyay, Conjugate gradient
descent learned ANN for Indian summer monsoon rainfall and
efficiency assessment through Shannon-Fano coding, J. Atmos.
Sol. Terr. Phys., 179 (2018) 202–205.
- Y. Dash, S.K. Mishra, B.K. Panigrahi, Rainfall prediction for the
Kerala state of India using artificial intelligence approaches,
Comput. Electr. Eng., 70 (2018) 66–73.
- R. Mohammadpour, Z. Asaie, M.R. Shojaeian, M. Sadeghzadeh,
A hybrid of ANN and CLA to predict rainfall, Arabian J. Geosci.,
11 (2018), doi: 10.1007/s12517-018-3804-z.
- D.T. Anh, T.D. Dang, S.P. Van, Improved rainfall prediction
using combined pre-processing methods and feed-forward
neural networks, J, 2 (2019) 65–83.
- I.R. Ilaboya, O.E. Igbinedion, Performance of multiple linear
regression (MLR) and artificial neural network (ANN) for the
prediction of monthly maximum rainfall in Benin City, Nigeria,
Int. J. Eng. Sci. Appl., 3 (2019) 21–37.
- L.C.P. Velasco, R.P. Serquiña, M.S.A. Zamad, B.F. Juanico,
J.C. Lomocso, Week-ahead rainfall forecasting using multilayer
perceptron neural network, Procedia Comput. Sci., 161 (2019)
386–397.
- I. Hossain, H.M. Rasel, M. Imteaz, F. Mekanik, Long-term
seasonal rainfall forecasting using linear and non-linear
modelling approaches: a case study for Western Australia,
Meteorol. Atmos. Phys., 132 (2019) 131–141.
- Y. Lin, P.C. Lee, K.C. Ma, C.C. Chiu, A hybrid grey model to
forecast the annual maximum daily rainfall, KSCE J. Civ. Eng.,
23 (2019) 4933–4948.
- A.P. Ayodele, E.E. Precious, Seasonal rainfall prediction in
Lagos, Nigeria using artificial neural network, Asian J. Res.
Comput. Sci., 3 (2019) 1–10.
- N. Bensafi, M. Lazri, S. Ameur, Novel WkNN-based technique
to improve instantaneous rainfall estimation over the north of
Algeria using the multispectral MSG SEVIRI imagery, J. Atmos.
Sol. Terr. Phys., 183 (2019) 110–119.
- S.H. Pour, A.K.A. Wahab, S. Shahid, Physical-empirical models
for prediction of seasonal rainfall extremes of Peninsular
Malaysia, Atmos. Res., 233 (2020) 104720, doi: 10.1016/j.
atmosres.2019.104720.
- B.T. Pham, L.M. Le, T.T. Le, K.T. Bui, V.M. Le, H.B. Ly, I. Prakash,
Development of advanced artificial intelligence models for
daily rainfall prediction, Atmos. Res., 237 (2020) 104845, doi:
10.1016/j.atmosres.2020.104845.
- M. Ali, R. Prasad, Y. Xiang, Z.M. Yaseen, Complete ensemble
empirical mode decomposition hybridized with random
forest and kernel ridge regression model for monthly
rainfall forecasts, J. Hydrol., 584 (2020) 124647, doi: 10.1016/j.
jhydrol.2020.124647.
- H. Gökçekuş, Y. Kassem, J. Aljamal, Analysis of different combinations
of meteorological parameters in predicting rainfall
with an ANN approach: a case study in Morphou, Northern
Cyprus, Desal. Water Treat., 177 (2020) 350–362.
- L. Diop, S. Samadianfard, A. Bodian, Z.M. Yaseen, M.A. Ghorbani,
H. Salimi, Annual rainfall forecasting using hybrid artificial
intelligence model: integration of multilayer perceptron with
whale optimization algorithm, Water Resour. Manage., 34 (2020)
733–746.
- K.L. Chong, S.H. Lai, Y. Yao, A.N. Ahmed, W.Z. Jaafar,
A. El-Shafie, Performance enhancement model for rainfall
forecasting utilizing integrated wavelet-convolutional neural
network, Water Resour. Manage., 34 (2020) 2371–2387.
- Seo, Detailed Explanation of the Geography of Jigawa State under
the following Headings: Location, Position, Size, Population,
People, Climate, Vegetation, Drainage, Mineral Resources,
Economic Activities and Developmental Infrastructural
Activities, 2020. Available at: http://nurt9jageneral.blogspot.
com/2016/10/detailed-explanation-of-geography-of.html
(Accessed May 2, 2020)
- A.A. Mamoon, A. Rahman, Selection of the best fit probability
distribution in rainfall frequency analysis for Qatar, Nat.
Hazards, 86 (2016) 281–296.
- Y. Kassem, H. Gökçekuş, Water resources and rainfall
distribution function: a case study in Lenanon, Desal. Water
Treat., 177 (2020) 306–321.
- Y. Kassem, H. Çamur, S.M.A. Alhuoti, Solar energy technology
for northern Cyprus: assessment, statistical analysis, and
feasibility study, Energies, 13 (2020) 940–969, doi: 10.3390/
en13040940.
- M. Javari, Assessment of temperature and elevation controls
on spatial variability of rainfall in Iran, Atmosphere, 8 (2017)
45–85, doi: 10.3390/atmos8030045.
- J. Zou, Y. Han, S. So, Overview of artificial neural networks,
Methods Mol. Biol., 458 (2008) 14–22.
- Y. Zheng, M.S. Shadloo, H. Nasiri, A. Maleki, A. Karimipour,
I. Tlili, Prediction of viscosity of biodiesel blends using various
artificial model and comparison with empirical correlations,
Renewable Energy, 153 (2020) 1296–1306.
- A. Pwasong, S. Sathasivam, A new hybrid quadratic regression
and cascade forward backpropagation neural network,
Neurocomputing, 182 (2016) 197–209.
- A. Hedayat, H. Davilu, A.A. Barfrosh, K. Sepanloo, Estimation
of research reactor core parameters using cascade feed forward
artificial neural networks, Prog. Nucl. Energy, 51 (2009) 709–718.
- A. Barati-Harooni, A. Najafi-Marghmaleki, An accurate
RBF-NN model for estimation of viscosity of nanofluids, J. Mol.
Liq., 224 (2016) 580–588.
- J. Sadler, J. Goodall, M. Morsy, K. Spencer, Modeling urban
coastal flood severity from crowd-sourced flood reports using
Poisson regression and random forest, J. Hydrol., 559 (2018)
43–55.
- S. Coxe, S.G. West, L.S. Aiken, The analysis of count data: a
gentle introduction to poisson regression and its alternatives,
J. Personality Assess., 91 (2009) 121–136.
- J. Cho, J. Lee, Multiple linear regression models for predicting
nonpoint-source pollutant discharge from a highland
agricultural region, Water, 10 (2018) 1156–1173, doi: 10.3390/
w10091156.
- G. Tegegne, D.K. Park, Y.O. Kim, Comparison of hydrological
models for the assessment of water resources in a data-scarce
region, the Upper Blue Nile River Basin, J. Hydrol.: Reg. Stud.,
14 (2017) 49–66.