References

  1. F. Frank, E. Viglizzo, Water use in rain-fed farming at different scales in the Pampas of Argentina, Agric. Syst., 109 (2012) 35–42.
  2. B. Biazin, G. Sterk, M. Temesgen, A. Abdulkedir, L. Stroosnijder, Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa – a review, Phys. Chem. Earth Parts A/B/C, 47–48 (2012) 139–151.
  3. S. Dercon, L. Christiaensen, Consumption Risk, Technology Adoption and Poverty Traps: Evidence from Ethiopia, World Bank Policy Research Working Paper 4257, SSRN Electronic Journal, 2008.
  4. S.D. Falco, J.P. Chavas, On crop biodiversity, risk exposure, and food security in the highlands of Ethiopia, Am. J. Agric. Econ., 91 (2009) 599–611.
  5. M. Amare, N.D. Jensen, B. Shiferaw, J.D. Cissé, Rainfall shocks and agricultural productivity: implication for rural household consumption, Agric. Syst., 166 (2018) 79–89.
  6. O.E. Olayide, T. Alabi, Between rainfall and food poverty: assessing vulnerability to climate change in an agricultural economy, J. Cleaner Prod., 198 (2018) 1–10.
  7. O.E. Olayide, I.K. Tetteh, L. Popoola, Differential impacts of rainfall and irrigation on agricultural production in Nigeria: any lessons for climate-smart agriculture?, Agric. Water Manage., 178 (2016) 30–36.
  8. A.F. Ribeiro, A. Russo, C.M. Gouveia, P. Páscoa, Copulabased agricultural drought risk of rainfed cropping systems, Agric. Water Manage., 223 (2019) 105689, doi: 10.1016/j. agwat.2019.105689.
  9. National Bureau of Statistics. Contributions to Gross Domestic Products. Available at: http://nigerianstat.gov.ng (Accessed February 16, 2020)
  10. H. Fjelde, N.V. Uexkull, Climate triggers: rainfall anomalies, vulnerability and communal conflict in Sub-Saharan Africa, Political Geogr., 31 (2012) 444–453.
  11. W. Sha, K. Edwards, The use of artificial neural networks in materials science based research, Mater. Des., 28 (2007) 1747–1752.
  12. F.S. Mjalli, S. Al-Asheh, H. Alfadala, Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance, J. Environ. Manage., 83 (2007) 329–338.
  13. S.C. Keat, B.B. Chun, L.H. San, M.Z.M. Jafri, Multiple regression analysis in modelling of carbon dioxide emissions by energy consumption use in Malaysia, AIP Conf. Proc., 1657 (2015) 1–5, doi: 10.1063/1.4915185.
  14. H.D. Purnomo, K.D. Hartomo, S.Y.J. Prasetyo, Artificial neural network for monthly rainfall rate prediction, IOP Conf. Ser.: Mater. Sci. Eng., 180 (2017) 1–9, doi: 10.1088/1757-899X/180/1/012057.
  15. T.S. Abdulkadir, A.W. Salami, A.S. Aremu, A.M. Ayanshola, D.O. Oyejobi, Assessment of neural networks performance in modeling rainfall amounts, J. Res. For. Wildl. Environ., 9 (2017) 12–22.
  16. A.M. Bagirov, A. Mahmood, A. Barton, Prediction of monthly rainfall in Victoria, Australia: clusterwise linear regression approach, Atmos. Res., 188 (2017) 20–29.
  17. T. Kashiwao, K. Nakayama, S. Ando, K. Ikeda, M. Lee, A. Bahadori, A neural network-based local rainfall prediction system using meteorological data on the internet: a case study using data from the Japan Meteorological Agency, Appl. Soft Comput., 56 (2017) 317–330.
  18. Y. Xiang, L. Gou, L. He, S. Xia, W. Wang, A SVR–ANN combined model based on ensemble EMD for rainfall prediction, Appl. Soft Comput., 73 (2018) 874–883.
  19. R. Mirabbasi, O. Kisi, H. Sanikhani, S.G. Meshram, Monthly long-term rainfall estimation in Central India using M5Tree, MARS, LSSVR, ANN and GEP models, Neural Comput. Appl., 31 (2018) 6843–6862.
  20. M. Zeynoddin, H. Bonakdari, A. Azari, I. Ebtehaj, B. Gharabaghi, H.R. Madavar, Novel hybrid linear stochastic with non-linear extreme learning machine methods for forecasting monthly rainfall a tropical climate, J. Environ. Manage., 222 (2018) 190–206.
  21. A. Bello, M. Mamman, Monthly rainfall prediction using artificial neural network: a case study of Kano, Nigeria, Environ. Earth Sci. Res. J., 5 (2018) 37–41.
  22. N. Rodi, M. Malek, A. Ismail, Monthly rainfall prediction model of peninsular Malaysia using clonal selection algorithm, Int. J. Eng. Technol., 7 (2018) 182–185.
  23. S. Hudnurkar, N. Rayavarapu, Performance of Artificial Neural Network in Now Casting Summer Monsoon Rainfall: A Case Study, Conference: IEEE Punecon, Pune, 2018.
  24. E.E. Peter, E.E. Precious, Skill comparison of multiple-linear regression model and artificial neural network model in seasonal rainfall prediction-north east Nigeria, Asian Res. J. Math., 11 (2018) 1–10.
  25. S. Chattopadhyay, G. Chattopadhyay, Conjugate gradient descent learned ANN for Indian summer monsoon rainfall and efficiency assessment through Shannon-Fano coding, J. Atmos. Sol. Terr. Phys., 179 (2018) 202–205.
  26. Y. Dash, S.K. Mishra, B.K. Panigrahi, Rainfall prediction for the Kerala state of India using artificial intelligence approaches, Comput. Electr. Eng., 70 (2018) 66–73.
  27. R. Mohammadpour, Z. Asaie, M.R. Shojaeian, M. Sadeghzadeh, A hybrid of ANN and CLA to predict rainfall, Arabian J. Geosci., 11 (2018), doi: 10.1007/s12517-018-3804-z.
  28. D.T. Anh, T.D. Dang, S.P. Van, Improved rainfall prediction using combined pre-processing methods and feed-forward neural networks, J, 2 (2019) 65–83.
  29. I.R. Ilaboya, O.E. Igbinedion, Performance of multiple linear regression (MLR) and artificial neural network (ANN) for the prediction of monthly maximum rainfall in Benin City, Nigeria, Int. J. Eng. Sci. Appl., 3 (2019) 21–37.
  30. L.C.P. Velasco, R.P. Serquiña, M.S.A. Zamad, B.F. Juanico, J.C. Lomocso, Week-ahead rainfall forecasting using multilayer perceptron neural network, Procedia Comput. Sci., 161 (2019) 386–397.
  31. I. Hossain, H.M. Rasel, M. Imteaz, F. Mekanik, Long-term seasonal rainfall forecasting using linear and non-linear modelling approaches: a case study for Western Australia, Meteorol. Atmos. Phys., 132 (2019) 131–141.
  32. Y. Lin, P.C. Lee, K.C. Ma, C.C. Chiu, A hybrid grey model to forecast the annual maximum daily rainfall, KSCE J. Civ. Eng., 23 (2019) 4933–4948.
  33. A.P. Ayodele, E.E. Precious, Seasonal rainfall prediction in Lagos, Nigeria using artificial neural network, Asian J. Res. Comput. Sci., 3 (2019) 1–10.
  34. N. Bensafi, M. Lazri, S. Ameur, Novel WkNN-based technique to improve instantaneous rainfall estimation over the north of Algeria using the multispectral MSG SEVIRI imagery, J. Atmos. Sol. Terr. Phys., 183 (2019) 110–119.
  35. S.H. Pour, A.K.A. Wahab, S. Shahid, Physical-empirical models for prediction of seasonal rainfall extremes of Peninsular Malaysia, Atmos. Res., 233 (2020) 104720, doi: 10.1016/j. atmosres.2019.104720.
  36. B.T. Pham, L.M. Le, T.T. Le, K.T. Bui, V.M. Le, H.B. Ly, I. Prakash, Development of advanced artificial intelligence models for daily rainfall prediction, Atmos. Res., 237 (2020) 104845, doi: 10.1016/j.atmosres.2020.104845.
  37. M. Ali, R. Prasad, Y. Xiang, Z.M. Yaseen, Complete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecasts, J. Hydrol., 584 (2020) 124647, doi: 10.1016/j. jhydrol.2020.124647.
  38. H. Gökçekuş, Y. Kassem, J. Aljamal, Analysis of different combinations of meteorological parameters in predicting rainfall with an ANN approach: a case study in Morphou, Northern Cyprus, Desal. Water Treat., 177 (2020) 350–362.
  39. L. Diop, S. Samadianfard, A. Bodian, Z.M. Yaseen, M.A. Ghorbani, H. Salimi, Annual rainfall forecasting using hybrid artificial intelligence model: integration of multilayer perceptron with whale optimization algorithm, Water Resour. Manage., 34 (2020) 733–746.
  40. K.L. Chong, S.H. Lai, Y. Yao, A.N. Ahmed, W.Z. Jaafar, A. El-Shafie, Performance enhancement model for rainfall forecasting utilizing integrated wavelet-convolutional neural network, Water Resour. Manage., 34 (2020) 2371–2387.
  41. Seo, Detailed Explanation of the Geography of Jigawa State under the following Headings: Location, Position, Size, Population, People, Climate, Vegetation, Drainage, Mineral Resources, Economic Activities and Developmental Infrastructural Activities, 2020. Available at: http://nurt9jageneral.blogspot. com/2016/10/detailed-explanation-of-geography-of.html (Accessed May 2, 2020)
  42. A.A. Mamoon, A. Rahman, Selection of the best fit probability distribution in rainfall frequency analysis for Qatar, Nat. Hazards, 86 (2016) 281–296.
  43. Y. Kassem, H. Gökçekuş, Water resources and rainfall distribution function: a case study in Lenanon, Desal. Water Treat., 177 (2020) 306–321.
  44. Y. Kassem, H. Çamur, S.M.A. Alhuoti, Solar energy technology for northern Cyprus: assessment, statistical analysis, and feasibility study, Energies, 13 (2020) 940–969, doi: 10.3390/ en13040940.
  45. M. Javari, Assessment of temperature and elevation controls on spatial variability of rainfall in Iran, Atmosphere, 8 (2017) 45–85, doi: 10.3390/atmos8030045.
  46. J. Zou, Y. Han, S. So, Overview of artificial neural networks, Methods Mol. Biol., 458 (2008) 14–22.
  47. Y. Zheng, M.S. Shadloo, H. Nasiri, A. Maleki, A. Karimipour, I. Tlili, Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations, Renewable Energy, 153 (2020) 1296–1306.
  48. A. Pwasong, S. Sathasivam, A new hybrid quadratic regression and cascade forward backpropagation neural network, Neurocomputing, 182 (2016) 197–209.
  49. A. Hedayat, H. Davilu, A.A. Barfrosh, K. Sepanloo, Estimation of research reactor core parameters using cascade feed forward artificial neural networks, Prog. Nucl. Energy, 51 (2009) 709–718.
  50. A. Barati-Harooni, A. Najafi-Marghmaleki, An accurate RBF-NN model for estimation of viscosity of nanofluids, J. Mol. Liq., 224 (2016) 580–588.
  51. J. Sadler, J. Goodall, M. Morsy, K. Spencer, Modeling urban coastal flood severity from crowd-sourced flood reports using Poisson regression and random forest, J. Hydrol., 559 (2018) 43–55.
  52. S. Coxe, S.G. West, L.S. Aiken, The analysis of count data: a gentle introduction to poisson regression and its alternatives, J. Personality Assess., 91 (2009) 121–136.
  53. J. Cho, J. Lee, Multiple linear regression models for predicting nonpoint-source pollutant discharge from a highland agricultural region, Water, 10 (2018) 1156–1173, doi: 10.3390/ w10091156.
  54. G. Tegegne, D.K. Park, Y.O. Kim, Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin, J. Hydrol.: Reg. Stud., 14 (2017) 49–66.