References
   -  F. Frank, E. Viglizzo, Water use in rain-fed farming at different
    scales in the Pampas of Argentina, Agric. Syst., 109 (2012)
    35–42. 
-  B. Biazin, G. Sterk, M. Temesgen, A. Abdulkedir, L. Stroosnijder,
    Rainwater harvesting and management in rainfed agricultural
    systems in sub-Saharan Africa – a review, Phys. Chem. Earth
    Parts A/B/C, 47–48 (2012) 139–151. 
-  S. Dercon, L. Christiaensen, Consumption Risk, Technology
    Adoption and Poverty Traps: Evidence from Ethiopia, World
    Bank Policy Research Working Paper 4257, SSRN Electronic
    Journal, 2008. 
-  S.D. Falco, J.P. Chavas, On crop biodiversity, risk exposure, and
    food security in the highlands of Ethiopia, Am. J. Agric. Econ.,
    91 (2009) 599–611. 
-  M. Amare, N.D. Jensen, B. Shiferaw, J.D. Cissé, Rainfall shocks
    and agricultural productivity: implication for rural household
    consumption, Agric. Syst., 166 (2018) 79–89. 
-  O.E. Olayide, T. Alabi, Between rainfall and food poverty:
    assessing vulnerability to climate change in an agricultural
    economy, J. Cleaner Prod., 198 (2018) 1–10. 
-  O.E. Olayide, I.K. Tetteh, L. Popoola, Differential impacts of
    rainfall and irrigation on agricultural production in Nigeria: any
    lessons for climate-smart agriculture?, Agric. Water Manage.,
    178 (2016) 30–36. 
-  A.F. Ribeiro, A. Russo, C.M. Gouveia, P. Páscoa, Copulabased
    agricultural drought risk of rainfed cropping systems,
    Agric. Water Manage., 223 (2019) 105689, doi: 10.1016/j.
    agwat.2019.105689. 
-  National Bureau of Statistics. Contributions to Gross Domestic
    Products. Available at: http://nigerianstat.gov.ng (Accessed
    February 16, 2020) 
-  H. Fjelde, N.V. Uexkull, Climate triggers: rainfall anomalies,
    vulnerability and communal conflict in Sub-Saharan Africa,
    Political Geogr., 31 (2012) 444–453. 
-  W. Sha, K. Edwards, The use of artificial neural networks
    in materials science based research, Mater. Des., 28 (2007)
    1747–1752. 
-  F.S. Mjalli, S. Al-Asheh, H. Alfadala, Use of artificial neural
    network black-box modeling for the prediction of wastewater
    treatment plants performance, J. Environ. Manage., 83 (2007)
    329–338. 
-  S.C. Keat, B.B. Chun, L.H. San, M.Z.M. Jafri, Multiple regression
    analysis in modelling of carbon dioxide emissions by energy
    consumption use in Malaysia, AIP Conf. Proc., 1657 (2015) 1–5,
    doi: 10.1063/1.4915185. 
-  H.D. Purnomo, K.D. Hartomo, S.Y.J. Prasetyo, Artificial
    neural network for monthly rainfall rate prediction,
    IOP Conf. Ser.: Mater. Sci. Eng., 180 (2017) 1–9, doi:
    10.1088/1757-899X/180/1/012057. 
-  T.S. Abdulkadir, A.W. Salami, A.S. Aremu, A.M. Ayanshola,
    D.O. Oyejobi, Assessment of neural networks performance in
    modeling rainfall amounts, J. Res. For. Wildl. Environ., 9 (2017)
    12–22. 
-  A.M. Bagirov, A. Mahmood, A. Barton, Prediction of monthly
    rainfall in Victoria, Australia: clusterwise linear regression
    approach, Atmos. Res., 188 (2017) 20–29. 
-  T. Kashiwao, K. Nakayama, S. Ando, K. Ikeda, M. Lee,
    A. Bahadori, A neural network-based local rainfall prediction
    system using meteorological data on the internet: a case study
    using data from the Japan Meteorological Agency, Appl. Soft
    Comput., 56 (2017) 317–330. 
-  Y. Xiang, L. Gou, L. He, S. Xia, W. Wang, A SVR–ANN combined
    model based on ensemble EMD for rainfall prediction, Appl.
    Soft Comput., 73 (2018) 874–883. 
-  R. Mirabbasi, O. Kisi, H. Sanikhani, S.G. Meshram, Monthly
    long-term rainfall estimation in Central India using M5Tree,
    MARS, LSSVR, ANN and GEP models, Neural Comput. Appl.,
    31 (2018) 6843–6862. 
-  M. Zeynoddin, H. Bonakdari, A. Azari, I. Ebtehaj, B. Gharabaghi,
    H.R. Madavar, Novel hybrid linear stochastic with non-linear
    extreme learning machine methods for forecasting monthly
    rainfall a tropical climate, J. Environ. Manage., 222 (2018)
    190–206. 
-  A. Bello, M. Mamman, Monthly rainfall prediction using
    artificial neural network: a case study of Kano, Nigeria, Environ.
    Earth Sci. Res. J., 5 (2018) 37–41. 
-  N. Rodi, M. Malek, A. Ismail, Monthly rainfall prediction model
    
    of peninsular Malaysia using clonal selection algorithm, Int. J.
    Eng. Technol., 7 (2018) 182–185. 
-  S. Hudnurkar, N. Rayavarapu, Performance of Artificial Neural
    Network in Now Casting Summer Monsoon Rainfall: A Case
    Study, Conference: IEEE Punecon, Pune, 2018. 
-  E.E. Peter, E.E. Precious, Skill comparison of multiple-linear
    regression model and artificial neural network model in
    seasonal rainfall prediction-north east Nigeria, Asian Res. J.
    Math., 11 (2018) 1–10. 
-  S. Chattopadhyay, G. Chattopadhyay, Conjugate gradient
    descent learned ANN for Indian summer monsoon rainfall and
    efficiency assessment through Shannon-Fano coding, J. Atmos.
    Sol. Terr. Phys., 179 (2018) 202–205. 
-  Y. Dash, S.K. Mishra, B.K. Panigrahi, Rainfall prediction for the
    Kerala state of India using artificial intelligence approaches,
    Comput. Electr. Eng., 70 (2018) 66–73. 
-  R. Mohammadpour, Z. Asaie, M.R. Shojaeian, M. Sadeghzadeh,
    A hybrid of ANN and CLA to predict rainfall, Arabian J. Geosci.,
    11 (2018), doi: 10.1007/s12517-018-3804-z. 
-  D.T. Anh, T.D. Dang, S.P. Van, Improved rainfall prediction
    using combined pre-processing methods and feed-forward
    neural networks, J, 2 (2019) 65–83. 
-  I.R. Ilaboya, O.E. Igbinedion, Performance of multiple linear
    regression (MLR) and artificial neural network (ANN) for the
    prediction of monthly maximum rainfall in Benin City, Nigeria,
    Int. J. Eng. Sci. Appl., 3 (2019) 21–37. 
-  L.C.P. Velasco, R.P. Serquiña, M.S.A. Zamad, B.F. Juanico,
    J.C. Lomocso, Week-ahead rainfall forecasting using multilayer
    perceptron neural network, Procedia Comput. Sci., 161 (2019)
    386–397. 
-  I. Hossain, H.M. Rasel, M. Imteaz, F. Mekanik, Long-term
    seasonal rainfall forecasting using linear and non-linear
    modelling approaches: a case study for Western Australia,
    Meteorol. Atmos. Phys., 132 (2019) 131–141. 
-  Y. Lin, P.C. Lee, K.C. Ma, C.C. Chiu, A hybrid grey model to
    forecast the annual maximum daily rainfall, KSCE J. Civ. Eng.,
    23 (2019) 4933–4948. 
-  A.P. Ayodele, E.E. Precious, Seasonal rainfall prediction in
    Lagos, Nigeria using artificial neural network, Asian J. Res.
    Comput. Sci., 3 (2019) 1–10. 
-  N. Bensafi, M. Lazri, S. Ameur, Novel WkNN-based technique
    to improve instantaneous rainfall estimation over the north of
    Algeria using the multispectral MSG SEVIRI imagery, J. Atmos.
    Sol. Terr. Phys., 183 (2019) 110–119. 
-  S.H. Pour, A.K.A. Wahab, S. Shahid, Physical-empirical models
    for prediction of seasonal rainfall extremes of Peninsular
    Malaysia, Atmos. Res., 233 (2020) 104720, doi: 10.1016/j.
    atmosres.2019.104720. 
-  B.T. Pham, L.M. Le, T.T. Le, K.T. Bui, V.M. Le, H.B. Ly, I. Prakash,
    Development of advanced artificial intelligence models for
    daily rainfall prediction, Atmos. Res., 237 (2020) 104845, doi:
    10.1016/j.atmosres.2020.104845. 
-  M. Ali, R. Prasad, Y. Xiang, Z.M. Yaseen, Complete ensemble
    empirical mode decomposition hybridized with random
    forest and kernel ridge regression model for monthly
    rainfall forecasts, J. Hydrol., 584 (2020) 124647, doi: 10.1016/j.
    jhydrol.2020.124647. 
-  H. Gökçekuş, Y. Kassem, J. Aljamal, Analysis of different combinations
    of meteorological parameters in predicting rainfall
    with an ANN approach: a case study in Morphou, Northern
    Cyprus, Desal. Water Treat., 177 (2020) 350–362. 
-  L. Diop, S. Samadianfard, A. Bodian, Z.M. Yaseen, M.A. Ghorbani,
    H. Salimi, Annual rainfall forecasting using hybrid artificial
    intelligence model: integration of multilayer perceptron with
    whale optimization algorithm, Water Resour. Manage., 34 (2020)
    733–746. 
-  K.L. Chong, S.H. Lai, Y. Yao, A.N. Ahmed, W.Z. Jaafar,
    A. El-Shafie, Performance enhancement model for rainfall
    forecasting utilizing integrated wavelet-convolutional neural
    network, Water Resour. Manage., 34 (2020) 2371–2387. 
-  Seo, Detailed Explanation of the Geography of Jigawa State under
    the following Headings: Location, Position, Size, Population,
    People, Climate, Vegetation, Drainage, Mineral Resources,
    Economic Activities and Developmental Infrastructural
    Activities, 2020. Available at: http://nurt9jageneral.blogspot.
    com/2016/10/detailed-explanation-of-geography-of.html
    (Accessed May 2, 2020) 
-  A.A. Mamoon, A. Rahman, Selection of the best fit probability
    distribution in rainfall frequency analysis for Qatar, Nat.
    Hazards, 86 (2016) 281–296. 
-  Y. Kassem, H. Gökçekuş, Water resources and rainfall
    distribution function: a case study in Lenanon, Desal. Water
    Treat., 177 (2020) 306–321. 
-  Y. Kassem, H. Çamur, S.M.A. Alhuoti, Solar energy technology
    for northern Cyprus: assessment, statistical analysis, and
    feasibility study, Energies, 13 (2020) 940–969, doi: 10.3390/
    en13040940. 
-  M. Javari, Assessment of temperature and elevation controls
    on spatial variability of rainfall in Iran, Atmosphere, 8 (2017)
    45–85, doi: 10.3390/atmos8030045. 
-  J. Zou, Y. Han, S. So, Overview of artificial neural networks,
    Methods Mol. Biol., 458 (2008) 14–22. 
-  Y. Zheng, M.S. Shadloo, H. Nasiri, A. Maleki, A. Karimipour,
    I. Tlili, Prediction of viscosity of biodiesel blends using various
    artificial model and comparison with empirical correlations,
    Renewable Energy, 153 (2020) 1296–1306. 
-  A. Pwasong, S. Sathasivam, A new hybrid quadratic regression
    and cascade forward backpropagation neural network,
    Neurocomputing, 182 (2016) 197–209. 
-  A. Hedayat, H. Davilu, A.A. Barfrosh, K. Sepanloo, Estimation
    of research reactor core parameters using cascade feed forward
    artificial neural networks, Prog. Nucl. Energy, 51 (2009) 709–718. 
-  A. Barati-Harooni, A. Najafi-Marghmaleki, An accurate
    RBF-NN model for estimation of viscosity of nanofluids, J. Mol.
    Liq., 224 (2016) 580–588. 
-  J. Sadler, J. Goodall, M. Morsy, K. Spencer, Modeling urban
    coastal flood severity from crowd-sourced flood reports using
    Poisson regression and random forest, J. Hydrol., 559 (2018)
    43–55. 
-  S. Coxe, S.G. West, L.S. Aiken, The analysis of count data: a
    gentle introduction to poisson regression and its alternatives,
    J. Personality Assess., 91 (2009) 121–136. 
-  J. Cho, J. Lee, Multiple linear regression models for predicting
    nonpoint-source pollutant discharge from a highland
    agricultural region, Water, 10 (2018) 1156–1173, doi: 10.3390/
    w10091156. 
-  G. Tegegne, D.K. Park, Y.O. Kim, Comparison of hydrological
    models for the assessment of water resources in a data-scarce
    region, the Upper Blue Nile River Basin, J. Hydrol.: Reg. Stud.,
	  14 (2017) 49–66.