References

  1. D. Orhon, Evolution of the activated sludge process: the first 50 years, J. Chem. Technol. Biotechnol., 90 (2015) 608–640.
  2. O. Nowak, Optimizing the use of sludge treatment facilities at municipal WWTPs, J. Environ. Sci. Health., Part A, 41 (2006) 1807–1817.
  3. D. Fyitili, A. Zabaniotou, Utilization of sewage sludge in EU application of old and new methods, Renewable Sustainable Energ Rev., 12 (2008) 116–140.
  4. G. Insel, E. Kendir, A. Ayol, A. Erdincler, O. Arıkan, İ. İmamoglu, B.A. Alagoz, E.B. Gencsoy, F.D. Sanin, N. Büyükkamacı, O. Karatas, G. Saygili, G. Sevim, E.U. Cokgor, A. Filibeli, Current situation and future perspectives in municipal wastewater treatment and sludge management in Turkey, J. Residuals Sci. Technol., 10 (2013) 133–138.
  5. S. Sozen, E.U. Cokgor, G. Insel, D.O. Tas, H. Dulkadiroglu, C. Karaca, A. Filibeli, S. Meric, D. Orhon, Scientific basis of dissolved organic carbon limitation for landfilling of municipal treatment sludge – is it attainable and justifiable?, Waste Manage, 34 (2014) 1657–1666.
  6. C.V. Andreoli, M.V. Sperling, F. Fernandes, M. Ronteltap, Sludge Treatment and Disposal, IWA Press, London, 2007.
  7. A.G. Capodaglio, G. Olsson, Energy issues in sustainable urban wastewater management: use, demand reduction and recovery in the urban water cycle, Sustainability, 12 (2020) 266 1–17.
  8. S. Ozdemir, E.U. Cokgor, D. Orhon, Modeling the fate of particulate components in aerobic sludge stabilization – performance limitations, Bioresour. Technol., 164 (2014) 315–322.
  9. S. Bahar, A.S. Ciggin, A simple kinetic modeling approach for aerobic stabilization of real waste activated sludge, Chem. Eng. J., 303 (2016) 194–201.
  10. K. Svardal, H. Kroiss, Energy requirements for waste water treatment, Water Sci. Technol., 64 (2011) 1355–1361.
  11. C. Karaca, H.C. Okutan, S. Sozen, D. Orhon, Energy Recovery with Syngas Production from Sewage Sludge Using High Rate Pyrolysis at High Temperature, SEEP 2015, 8th International Conference on Sustainable Energy and Environmental Protection, Paisley, 2015, pp. 74–79.
  12. E. Ubay Cokgor, E. Aydinli, D. Okutman Tas, G.E. Zengin, D. Orhon, Impact of aerobic stabilization on the characteristics of treatment sludge in the leather tanning industry, Environ. Technol., 35 (2014) 719–726.
  13. S. Ozdemir, E.U. Cokgor, G. Insel, D. Orhon, Effect of extended aeration on the fate of particulate components in sludge stabilization, Bioresour. Technol., 174 (2014) 88–94.
  14. S. Ozdemir, D. Ucar, E.U. Cokgor, D. Orhon, Extent of endogenous decay and microbial activity in aerobic stabilization of biological sludge, Desal. Water Treat., 52 (2014) 6356–6362.
  15. W.J. Jewell, R.M. Kabrick, Autoheated aerobic thermophilic digestion with aeration, J. Water Pollut. Control Fed., 52 (1980) 512–523.
  16. A.L. Lehninger, Bioenergetics, 2nd ed., Benjamin Inc., New York, NY, 1971.
  17. P.L. McCarty, Stoichiometry of biological reactions, Prog. Water Technol., 7 (1975) 157–171.
  18. H.G. Kelly, Aerobic Thermophilic Digestion or Liquid Composting of Municipal Sludges, Proceedings ASCE, Environmental Engineering Specialty Conference, Austin, TX, 1989, pp. 650–662.
  19. S. Liu, N. Zhu, P. Ning, L.Y. Li, X. Gong, The one-stage autothermal thermophilic aerobic digestion for sewage sludge treatment: effects of temperature on stabilization process and sludge properties, Chem. Eng. J., 197 (2012) 223–230.
  20. S. Liu, N. Zhu, L.Y. Li, The one-stage autothermal thermophilic aerobic digestion for sewage sludge treatment, Chem. Eng. J., 174 (2011) 564–570.
  21. J. Cheng, L. Wang, Y. Ji, N. Zhu, F. Kong, The influence of factors on dewaterability of one-stage autothermal thermophilic aerobically digested sludges, World J. Microbiol. Biotechnol., 30 (2004) 639–647.
  22. L. Shao, T. Wang, T. Li, F. Lu, P. He, Comparison of sludge digestion under aerobic and anaerobic conditions with a focus on the degradation of proteins at mesophilic temperature, Bioresour. Technol., 140 (2013) 131–137.
  23. J. Cheng, Y. Ji, F. Kong, X. Chen, Combined mesophilic anaerobic and thermophilic aerobic digestion process: effect on sludge degradation and variation of sludge property, Appl. Biochem. Biotechnol., 171 (2013) 1701–1714.
  24. A.V. Piterina, J. Bartlett, J.T. Pembroke, Morphological characterisation of ATAD thermophilic sludge; sludge ecology and settleability, Water Res., 45 (2011) 3427–3438.
  25. ISO 6060, Water Quality-Determination of the Chemical Oxygen Demand, International Standards Organization, Switzerland, 1986.
  26. APHA, AWWA, WPCP, Standard Methods for the Examination of Water and Wastewater, 22nd ed, L.S. Clesceri, A.E. Greenberg, A.D. Eaton, Eds., American Public Health Association, Washington, DC, 2012.
  27. R.K. Goel, D.R. Noguera, Evaluation of sludge yield and phosphorus removal in a Cannibal solids reduction process, J. Environ. Eng., 132 (2006) 1331–1337.
  28. D. Okutman Tas, O. Karahan, G. Insel, S. Ovez, D. Orhon, H. Spanjers, Biodegradability and denitrification potential of settleable chemical oxygen demand in domestic wastewater, Water Environ. Res., 81 (2009) 715–727.
  29. C. Karaca, S. Sozen, D. Orhon, H.C. Okutan, High temperature pyrolysis of sewage sludge as a sustainable process for energy recovery, Waste Manage., 78 (2018) 217–226.
  30. E. Lloret, L. Pastor, A. Martinez-Medina, J. Blaya, J.A. Pascual, Evaluation of the removal of pathogens included in the Proposal for a European Directive on spreading of sludge on land during autothermal thermophilic aerobic digestion (ATAD), Chem. Eng. J., 198–199 (2012) 171–179.
  31. USEPA, Environmental Regulations and Technology: Autothermal Thermophilic Aerobic Digestion of Municipal Wastewater Sludge, Environmental Protection Agency, USA, 1990.
  32. G.D. Gebreeyessus, Effect of anaerobic digestion temperature on sludge quality, Waste Biomass Valorization, 11 (2020) 1851–1861.
  33. D. Orhon, D. Okutman, G. Insel, Characterization and biodegradation of settleable organic matter for domestic wastewater, Water SA, 28 (2002) 299–306.
  34. M. Henze, C.P. Leslie Grady Jr., W. Gujer, G.V.R. Marais, T. Matsuo, A general model for single-sludge wastewater treatment systems, Water Res., 21 (1987) 505–515.
  35. A.S. Ciggin, G. Insel, M. Majone, D. Orhon, Model evaluation of starch utilization by acclimated biomass with different culture history under pulse and continuous feeding, Bioresour. Technol., 138 (2013) 163–171.
  36. A. Ramdani, P. Dold, S. Deleris, D. Lamarre, A. Gadbois, Y. Comeau, Biodegradation of the endogenous residue of activated sludge, Water Res., 44 (2010) 2179–2188.
  37. B.J. Ni, G.P. Sheng, H.Q. Yu, Model-based characterization of endogenous maintenance, cell death and predation processes of activated sludge in sequencing batch reactors, Chem. Eng. Sci., 66 (2011) 747–754.
  38. M. Henze, Characterization of wastewater for modelling of activated sludge processes, Water Sci. Technol., 25 (1992) 1–15.