References
- Y. Kassem, H. Gökçekuş, Water resources and rainfall
distribution function: a case study in Lebanon, Desal. Water
Treat., 177 (2020) 306–321.
- S. Kundu, D. Khare, A. Mondal, Future changes in rainfall,
temperature, and reference evapotranspiration in central
India by least square support vector machine, Geosci. Front.,
8 (2017) 583–596.
- S. Dercon, L. Christiaensen, Consumption risk, technology
adoption and poverty traps: evidence from Ethiopia, SSRN
Electron. J., 4257 (2008) 1–41.
- S.D. Falco, J.P. Chavas, On crop biodiversity, risk exposure, and
food security in the highlands of Ethiopia, Am. J. Agric. Econ.,
91 (2009), 599–611.
- M. Amare, N.D. Jensen, B. Shiferaw, J.D. Cissé, Rainfall shocks
and agricultural productivity: implication for rural household
consumption, Agric. Syst., 166 (2018) 79–89.
- O.E. Olayide, O.T. Alabi, Between rainfall and food poverty:
assessing vulnerability to climate change in an agricultural
economy, J. Cleaner Prod., 198 (2018) 1–10.
- O.E. Olayide, I.K. Tetteh, L. Popoola, Differential impacts of
rainfall and irrigation on agricultural production in Nigeria:
any lessons for climate-smart agriculture?, Agric. Water
Manage, 178 (2016) 30–36.
- A.F. Ribeiro, A. Russo, C.M. Gouveia, P. Páscoa, Copula-based
agricultural drought risk of rainfed cropping systems, Agric. Water
Manage., 223 (2019) 105689, doi: 10.1016/j.agwat.2019.105689.
- M. Song, R. Wang, X. Zeng, Water resources utilization
efficiency and influence factors under environmental restrictions,
J. Cleaner Prod., 184 (2018) 611–621.
- S. Kundu, D. Khare, A. Mondal, Future changes in rainfall,
temperature and reference evapotranspiration in the central
India by least square support vector machine, Geosci. Front.,
8 (2017) 583–596.
- N. Seino, T. Aoyagi, H. Tsuguti, Numerical simulation of urban
impact on precipitation in Tokyo: how does urban temperature
rise affect precipitation?, Urban Clim., 23 (2018) 8–35.
- T. Iizumi, N. Ramankutty, How do weather and climate
influence cropping area and intensity?, Global Food Secur.,
4 (2015) 46–50.
- R.K. Chowdhury, S. Beecham, Influence of SOI, DMI and
niño3.4 on south Australian rainfall, Stochastic Environ. Res.
Risk Assess., 27 (2013) 1909–1920.
- O.P. Agboola, F. Egelioglu, Water scarcity in north Cyprus
and solar desalination research: a review, Desal. Water Treat.,
43 (2012) 29–42.
- G. Elkiran, F. Aslanova, S. Hiziroglu, Effluent water reuse
possibilities in northern Cyprus, Water, 11 (2019) 1–13,
doi: 10.3390/w11020191.
- A. Sofroniou, S. Bishop, Water scarcity in cyprus: a review and
call for integrated policy, Water, 6 (2014) 2898–2928.
- A.K. Sahai, M.K. Soman, V. Satyan, All India summer monsoon
rainfall prediction using an artificial neural network, Clim.
Dyn., 16 (2000) 291–302.
- O.A. Nnaji, Forecasting seasonal rainfall for agricultural
decision-making in northern Nigeria, Agric. For. Meteorol.,
107 (2001) 193–205.
- T.B. Trafalis, B. Santosa, M.B. Richman, Learning networks
in rainfall estimation, Comput. Manage. Sci., 2 (2005) 229–251.
- S. Chattopadhyay, Feed forward artificial neural network model
to predict the average summer-monsoon rainfall in India, Acta
Geophys., 55 (2007) 369–382.
- Z.L. Wang, H.H. Sheng, Rainfall Prediction Using Generalized
Regression Neural Network: Case Study Zhengzhou, 2010
International Conference on Computational and Information
Sciences, Zhengzhou, 2010.
- C.G. Udomboso, G.N. Amahia, Comparative analysis of rainfall
prediction using statistical neural network and classical linear
regression model, J. Mod. Math. Stat., 5 (2011) 66–70.
- K. Abhishek, A. Kumar, R. Ranjan, S. Kumar, A Rainfall
Prediction Model Using Artificial Neural Network, 2012 IEEE
Control and System Graduate Research Colloquium, Shah Alam,
Selangor, Malaysia, 2012.
- S.S. Kashid, R. Maity, Prediction of monthly rainfall on homogeneous
monsoon regions of India based on large scale circulation
patterns using genetic programming, J. Hydrol., 454 (2012) 26–41.
- S.A. Akrami, A. El-Shafie, O. Jaafar, Improving rainfall
forecasting efficiency using modified adaptive neuro-fuzzy
inference system (MANFIS), Water Resour. Manage., 27 (2013)
3507–3523.
- M.K. Goyal, Monthly rainfall prediction using wavelet
regression and neural network: an analysis of 1901–2002 data,
Assam, India, Theor. Appl. Climatol., 118 (2013) 25–34.
- J. Kajornrit, K.W. Wong, C.C. Fung, Y.S. Ong, An Integrated
Intelligent Technique for Monthly Rainfall Time Series
Prediction, 2014 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), Beijing, China, 2014.
- S.A. Akrami, V. Nourani, S.J.S. Hakim, Development of nonlinear
model based on wavelet-ANFIS for rainfall forecasting at
Klang Gates Dam, Water Resour. Manage., 28 (2014) 2999–3018.
- J. Farajzadeh, A.F. Fard, S. Lotfi, Modeling of monthly rainfall
and runoff of Urmia lake basin using “feed-forward neural
network” and “time series analysis” model, Water Resour. Ind.,
7–8 (2014) 38–48.
- J. Abbot, J. Marohasy, Input selection and optimization for
monthly rainfall forecasting in Queensland, Australia, using
artificial neural networks, Atmos Res., 138 (2014) 166–178.
- J. Marohasy, J. Abbot, Assessing the quality of eight different
maximum temperature time series as inputs when using
artificial neural networks to forecast monthly rainfall at Cape
Otway, Australia, Atmos. Res., 166 (2015) 141–149.
- A. Chaturvedi, Rainfall prediction using back-propagation
feed forward network, Int. J. Comput. Appl., 119 (2015) 1–5.
- Mislan, Haviluddin, S. Hardwinarto, Sumaryono, M. Aipassa,
Rainfall monthly prediction based on artificial neural network:
a case study in Tenggarong Station, East Kalimantan –
Indonesia, Procedia Comput. Sci., 59 (2015) 142–151.
- A. Kumar, N. Tyagi, Comparative Analysis of Backpropagation
and RBF Neural Network on Monthly Rainfall Prediction,
2016 International Conference on Inventive Computation
Technologies (ICICT), Coimbatore, India, 2016.
- N. Khalili, S.R. Khodashenas, K. Davary, M.M. Baygi,
F. Karimaldini, Prediction of rainfall using artificial neural
networks for synoptic station of Mashhad: a case study, Arabian
J. Geosci., 9 (2016), doi: 10.1007/s12517-016-2633-1.
- I.O. Ewona, J.E. Osang, U.I. Uquetan, E.O. Inah, S.O. Udo,
Rainfall prediction in Nigeria using artificial neural networks,
Int. J. Sci. Eng. Res., 7 (2016) 1157–1169.
- R. Hashim, C. Roy, S. Motamedi, S. Shamshirband, D. Petković,
M. Gocic, S.C. Lee, Selection of meteorological parameters
affecting rainfall estimation using neuro-fuzzy computing
methodology, Atmos. Res., 171 (2016) 21–30.
- S.R. Devi, P. Arulmozhivarman, C. Venkatesh, P. Agarwal,
Performance comparison of artificial neural network models
for daily rainfall prediction, Int. J. Autom. Comput., 13 (2016)
417–427.
- H.D. Purnomo, K.D. Hartomo, S.Y.J. Prasetyo, Artificial
neural network for monthly rainfall rate prediction, IOP
Conf. Ser.: Mater. Sci. Eng., 180 (2017) 1–9, doi: 10.1088/
1757-899X/180/1/012057.
- T.S. Abdulkadir, A.W. Salami, A.S. Aremu, A.M. Ayanshola,
D.O. Oyejobi, Assessment of neural networks performance in
modeling rainfall amounts, J. Res. For. Wildl. Environ., 9 (2017)
12–22.
- A.M. Bagirov, A. Mahmood, A. Barton, Prediction of monthly
rainfall in Victoria, Australia: clusterwise linear regression
approach, Atmos. Res., 188 (2017) 20–29.
- T. Kashiwao, K. Nakayama, S. Ando, K. Ikeda, M. Lee,
A. Bahadori, A neural network-based local rainfall prediction
system using meteorological data on the internet: a case study
using data from the Japan meteorological agency, Appl. Soft
Comput., 56 (2017) 317–330.
- Y. Xiang, L. Gou, L. He, S. Xia, W. Wang, A SVR–ANN combined
model based on ensemble EMD for rainfall prediction,
Appl. Soft Comput., 73 (2018) 874–883.
- R. Mirabbasi, O. Kisi, H. Sanikhani, S.G. Meshram, Monthly
long-term rainfall estimation in Central India using M5Tree,
MARS, LSSVR, ANN and GEP models, Neural Comput.
Appl., 31 (2018) 6843–6862.
- M. Zeynoddin, H. Bonakdari, A. Azari, I. Ebtehaj, B. Gharabaghi,
H.R. Madavar, Novel hybrid linear stochastic with non-linear
extreme learning machine methods for forecasting monthly
rainfall a tropical climate, J. Environ. Manage., 222 (2018)
190–206.
- A. Bello, M. Mamman, Monthly rainfall prediction using
artificial neural network: a case study of Kano, Nigeria, Environ.
Earth Sci. Res. J., 5 (2018) 37–41.
- N. Rodi, M. Malek, A. Ismail, Monthly rainfall prediction
model of peninsular Malaysia using clonal selection algorithm,
Int. J. Eng. Technol., 7 (2018) 182–185.
- S. Hudnurkar, N. Rayavarapu, Performance of Artificial Neural
Network in Nowcasting Summer Monsoon Rainfall: A case
Study, IEEE Punecon, Pune, 2018.
- E.E. Peter, E.E. Precious, Skill comparison of multiple-linear
regression model and artificial neural network model in
seasonal rainfall prediction-north east Nigeria, Asian Res.
J. Math., 11 (2018) 1–10.
- S. Chattopadhyay, G. Chattopadhyay, Conjugate gradient
descent learned ANN for Indian summer monsoon rainfall
and efficiency assessment through Shannon-Fano coding,
J. Atmos. Sol. Terr. Phys., 179 (2018) 202–205.
- Y. Dash, S.K. Mishra, B.K. Panigrahi, Rainfall prediction for the
Kerala state of India using artificial intelligence approaches,
Comput. Electr. Eng., 70 (2018) 66–73.
- R. Mohammadpour, Z. Asaie, M.R. Shojaeian, M. Sadeghzadeh,
A hybrid of ANN and CLA to predict rainfall, Arabian J.
Geosci., 11 (2018), doi: 10.1007/s12517-018-3804-z.
- D.T. Anh, T.D. Dang, S.P. Van, Improved rainfall prediction
using combined pre-processing methods and feed-forward
neural networks, J, 2 (2019) 65–83.
- I.R. Ilaboya, O.E. Igbinedion, Performance of multiple linear
regression (MLR) and artificial neural network (ANN) for the
prediction of monthly maximum rainfall in Benin City, Nigeria,
Int. J. Eng. Sci. Appl., 3 (2019) 21–37.
- L.C.P. Velasco, R.P. Serquiña, M.S.A. Zamad, B.F. Juanico,
J.C. Lomocso, Week-ahead rainfall forecasting using multilayer
perceptron neural network, Procedia Comput. Sci., 161 (2019)
386–397.
- I. Hossain, H.M. Rasel, M. Imteaz, F. Mekanik, Long-term
seasonal rainfall forecasting using linear and non-linear
modelling approaches: a case study for Western Australia,
Meteorol. Atmos. Phys., 132 (2019) 131–141.
- Y. Lin, P.C. Lee, K.C. Ma, C.C. Chiu, A hybrid grey model to
forecast the annual maximum daily rainfall, KSCE J. Civ. Eng.,
23 (2019) 4933–4948.
- A.P. Ayodele, E.E. Precious, Seasonal rainfall prediction in
Lagos, Nigeria using artificial neural network, Asian J. Res.
Comput. Sci., 3 (2019) 1–10.
- N. Bensafi, M. Lazri, S. Ameur, Novel WkNN-based technique
to improve instantaneous rainfall estimation over the north of
Algeria using the multispectral MSG SEVIRI imagery, J. Atmos.
Sol. Terr. Phys., 183 (2019) 110–119.
- S.H. Pour, A.K.A. Wahab, S. Shahid, Physical-empirical
models for prediction of seasonal rainfall extremes of
Peninsular Malaysia, Atmos. Res., 233 (2020), doi: 10.1016/j.
atmosres.2019.104720.
- B.T. Pham, L.M. Le, T.T. Le, K.T. Bui, V.M. Le, H.B. Ly, I. Prakash,
Development of advanced artificial intelligence models for
daily rainfall prediction, Atmos. Res., 237 (2020), doi: 10.1016/j.
atmosres.2020.104845.
- M. Ali, R. Prasad, Y. Xiang, Z.M. Yaseen, Complete ensemble
empirical mode decomposition hybridized with random forest
and kernel ridge regression model for monthly rainfall forecasts,
J. Hydrol., 584 (2020), doi: 10.1016/j.jhydrol.2020.124647.
- H. Gökçekuş, Y. Kassem, J. Aljamal, Analysis of different
combinations of meteorological parameters in predicting
rainfall with an ANN approach: a case study in Morphou,
Northern Cyprus, Desal. Water Treat., 177 (2020) 350–362.
- L. Diop, S. Samadianfard, A. Bodian, Z.M. Yaseen,
M.A. Ghorbani, H. Salimi, Annual rainfall forecasting using
hybrid artificial intelligence model: integration of multilayer
perceptron with whale optimization algorithm, Water Resour.
Manage., 34 (2020) 733–746.
- K.L. Chong, S.H. Lai, Y. Yao, A.N. Ahmed, W.Z. Jaafar,
A. El-Shafie, Performance enhancement model for rainfall
forecasting utilizing integrated wavelet-convolutional neural
network, Water Resour. Manage., 34 (2020) 2371–2387.
- V. Nourani, S. Uzelaltinbulat, F. Sadikoglu, N. Behfar, Artificial
intelligence based ensemble modeling for multi-station
prediction of precipitation, Atmosphere, 10 (2019), doi: 10.3390/
atmos10020080.
- D.J. Livingstone, Artificial Neural Networks, Methods in
Molecular Biology™, Humana Press, New York, 2009.
- Y. Kassem, H. Çamur, E. Esenel, Adaptive neuro-fuzzy inference
system (ANFIS) and response surface methodology (RSM)
prediction of biodiesel dynamic viscosity at 313 K, Procedia
Comput. Sci., 120 (2017) 521–528.
- J. Cho, J. Lee, Multiple linear regression models for predicting
nonpoint-source pollutant discharge from a highland
agricultural region, Water, 10 (2018) 1–17, doi: 10.3390/
w10091156.
- G. Tegegne, D.K. Park, Y.O. Kim, Comparison of hydrological
models for the assessment of water resources in a data-scarce
region, the Upper Blue Nile River Basin, J. Hydrol. Reg. Stud.,
14 (2017) 49–66.