References
- WHO, UNCF (UNICEF), Progress on Sanitation and Drinking
Water: Joint Monitoring Programme 2010 Update, World
Health Organization, United Nations Children’s Fund, WHO
Press, Geneva, Switzerland, 2012.
- T. Gómez, G. Gémar, M. Molinos-Senante, R. Sala-Garrido,
R. Caballero, Assessing the efficiency of wastewater treatment
plants: a double-bootstrap approach, J. Cleaner Prod.,
164 (2017) 315–324.
- V. Nourani, G. Elkiran, S.I. Abba, Wastewater treatment plant
performance analysis using artificial intelligence – an ensemble
approach, Water Sci. Technol., 78 (2018) 2064–2076.
- S.I. Abba, G. Elkiran, Effluent prediction of chemical oxygen
demand from the wastewater treatment plant using artificial
neural network application, Procedia Comput. Sci., 120 (2017)
156–163.
- N. Bekkari, A. Zeddouri, Using artificial neural network
for predicting and controlling the effluent chemical oxygen
demand in wastewater treatment plant, Manage. Environ.
Qual. Int. J., 30 (2019) 593–608.
- X.D. Wang, K. Kvaal, H. Ratnaweera, Explicit and interpretable
nonlinear soft sensor models for influent surveillance at a fullscale
wastewater treatment plant, J. Process Control, 77 (2019)
1–6.
- S.R. Naganna, P.C. Deka, M.A. Ghorbani, S.M. Biazar,
N. Al-Ansari, Z.M. Yaseen, Dew Point temperature estimation:
application of artificial intelligence model integrated with
nature-inspired optimization algorithms, Water (Switzerland),
11 (2019) 1–17.
- S.I. Abba, Q.B. Pham, G. Saini, N.T. Linh, A.N. Ahmed,
M. Mohajane, M. Khaledian, R.A. Abdulkadir, Q.-V. Bach,
Implementation of data intelligence models coupled with
ensemble machine learning for prediction of water quality
index, Environ. Sci. Pollut. Res., 27 (2020) 41524–41539.
- G. Elkiran, V. Nourani, S.I. Abba, J. Abdullahi, Artificial
intelligence-based approaches for multi-station modeling
of dissolve oxygen in river, Global J. Environ. Sci. Manage.,
4 (2018) 439–450.
- V. Nourani, G. Andalib, F. Sadikoglu, Multi-station streamflow
forecasting using wavelet denoising and artificial intelligence
models, Procedia Comput. Sci., 120 (2017) 617–624.
- Y.Y. Zhang, X. Gao, K. Smith, G. Inial, S.M. Liu, L.B. Conil,
B.C. Pan, Integrating water quality and operation into
prediction of water production in drinking water treatment
plants by genetic algorithm enhanced artificial neural network,
Water Res., 164 (2019) 114888, https://doi.org/10.1016/j.
watres.2019.114888.
- G. Elkiran, V. Nourani, S.I. Abba, Multi-step ahead modeling
of river water quality parameters using ensemble artificial
intelligence-based approach, J. Hydrol., 577 (2019) 123962,
https://doi.org/10.1016/j.jhydrol.2019.123962.
- V. Nourani, N. Farboudfam, Rainfall time series disaggregation
in mountainous regions using hybrid wavelet-artificial
intelligence methods, Environ. Res., 168 (2019) 306–318.
- A. Maleki, S. Nasseri, M.S. Aminabad, M. Hadi, Comparison
of ARIMA and NNAR models for forecasting water treatment
plant’s influent characteristics, KSCE J. Civ. Eng., 22 (2018)
3233–3245.
- W.C. Chen, N.-B. Chang, W.K. Shieh, Advanced hybrid
fuzzy-neural controller for industrial wastewater treatment,
J. Environ. Eng., 127 (2001) 1048–1059.
- F. Granata, S. Papirio, G. Esposito, R. Gargano, G. de Marinis,
Machine learning algorithms for the forecasting of wastewater
quality indicators, Water (Switzerland), 9 (2017) 1–12.
- A.K. Verma, T.N. Singh, Prediction of water quality from simple
field parameters, Environ. Earth Sci., 69 (2013) 821–829.
- H. Guo, K.H. Jeong, J.Y. Lim, J.W. Jo, Y.M. Kim, J.-P. Park,
J.H. Kim, K.H. Cho, Prediction of effluent concentration in a
wastewater treatment plant using machine learning models,
J. Environ. Sci., 32 (2015) 90–101.
- S.I. Abba, V. Nourani, G. Elkiran, Multi-parametric modeling
of water treatment plant using AI-based non-linear ensemble,
J. Water Supply Res. Technol. AQUA, 68 (2019) 547–561.
- S.I. Abba, G. Elkiran, V. Nourani, Non-linear Ensemble
Modeling for Multi-step Ahead Prediction of Treated COD
in Wastewater Treatment Plant, R.A. Aliev, J. Kacprzyk,
W. Pedrycz, M. Jamshidi, M.B. Babanli, F.M. Sadikoglu, Eds.,
10th International Conference on Theory and Application of
Soft Computing, Computing with Words and Perceptions
– ICSCCW-2019, Advances in Intelligent Systems and
Computing, Vol. 1095, Springer, Cham, 2020, pp. 683–689.
- G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine:
theory and applications, Neurocomputing, 70 (2006) 489–501.
- A. Solgi, A. Pourhaghi, R. Bahmani, H. Zarei, Improving SVR
and ANFIS performance using wavelet transform and PCA
algorithm for modeling and predicting biochemical oxygen
demand (BOD), Ecohydrol. Hydrobiol., 17 (2017) 164–175.
- Q. Wang, Kernel principal component analysis and its
applications in face recognition and active shape models,
Comput. Vision Pattern Recognit., (2012) arXiv:1207.3538.
- S.I. Abba, Q.B. Pham, A.G. Usman, N.T. Thuy Linh, D.S. Aliyu,
Q. Nguyen, Q.-V. Bach, Emerging evolutionary algorithm
integrated with kernel principal component analysis for
modeling the performance of a water treatment plant,
J. Water Process Eng., 33 (2020) 101081, https://doi.org/10.1016/j.
jwpe.2019.101081.
- M. Yaqub, H. Asif, S.B. Kim, W.T. Lee, Modeling of a fullscale
sewage treatment plant to predict the nutrient removal
efficiency using a long short-term memory (LSTM) neural
network, J. Water Process Eng., 37 (2020) 101388, https://doi.
org/10.1016/j.jwpe.2020.101388.
- J.-H. Kang, J.H. Song, S.S. Yoo, B.-J. Lee, H.W. Ji, Prediction of
odor concentration emitted from wastewater treatment plant
using an artificial neural network (ANN), Atmosphere (Basel),
11 (2020) 784, https://doi.org/10.3390/atmos11080784.
- M. Ansari, F. Othman, A. El-Shafie, Optimized fuzzy
inference system to enhance prediction accuracy for influent
characteristics of a sewage treatment plant, Sci. Total Environ.,
722 (2020) 137878, doi: 10.1016/j.scitotenv.2020.137878.
- A.M. Anter, D. Gupta, O. Castillo, A novel parameter estimation
in dynamic model via fuzzy swarm intelligence and chaos
theory for faults in wastewater treatment plant, Soft Comput.,
24 (2020) 111–129.
- N. Patel, J. Ruparelia, J. Barve, Prediction of total suspended
solids present in effluent of primary clarifier of industrial
common effluent treatment plant: mechanistic and fuzzy
approach, J. Water Process Eng., 34 (2020) 101146, https://doi.
org/10.1016/j.jwpe.2020.101146.
- A. Sharafati, S.B.H.S. Asadollah, M. Hosseinzadeh, The
potential of new ensemble machine learning models for
effluent quality parameters prediction and related uncertainty,
Process Saf. Environ. Prot., 140 (2020) 68–78.
- UNDP, New Nicosia Waste Water Treatment Plant, United
Nations Development Programme, Nicosia, Northern Part of
Cyprus, 2014.
- P. Shi, G.H. Li, Y.M. Yuan, G.Y. Huang, L. Kuang, Prediction of
dissolved oxygen content in aquaculture using clustering-based
softplus extreme learning machine, Comput. Electron. Agric.,
157 (2019) 329–338.
- G. Huang, G.-B. Huang, S.J. Song, K.Y. You, Trends in extreme
learning machines: a review, Neural Networks, 61 (2015)
32–48.
- Z.M. Yaseen, S.O. Sulaiman, R.C. Deo, K.-W. Chau, An enhanced
extreme learning machine model for river flow forecasting:
state-of-the-art, practical applications in water resource
engineering area and future research direction, J. Hydrol.,
569 (2018) 387–408.
- S.J. Hadi, S.I. Abba, S.S. Sammen, S.Q. Salih, N. Al-Ansari,
Z.M. Yaseen, Non-linear input variable selection approach
integrated with non-tuned data intelligence model for streamflow
pattern simulation, IEEE Access, 7 (2019) 141533–141548.
- S. Zhu, S. Heddam, Prediction of dissolved oxygen in urban
rivers at the three Gorges reservoir, China: extreme learning
machines (ELM) versus artificial neural network (ANN), Water
Qual. Res. J. Canada, 55 (2020) 106–118.
- H. Chen, Q. Zhang, J. Luo, Y. Xu, X. Zhang, An enhanced
Bacterial Foraging Optimization and its application for training
kernel extreme learning machine, Appl. Soft Comput., 86 (2020)
105884.
- S. Heddam, O. Kisi, Extreme learning machines: a new approach
for modeling dissolved oxygen (DO) concentration with and
without water quality variables as predictors, Environ. Sci.
Pollut. Res., 24 (2017) 16702–16724.
- J. Jin, P. Jiang, L. Li, H. Xu, G. Lin, Water quality monitoring
at a virtual watershed monitoring station using a modified
deep extreme learning machine, Hydrol. Sci. J., 65 (2020)
415–426.
- Z.M. Yaseen, H. Faris, N. Al-Ansari, Hybridized extreme
learning machine model with salp swarm algorithm: a novel
predictive model for hydrological application, Complexity,
2020 (2020), doi: 10.1155/2020/8206245.
- Q.B. Pham, S.I. Abba, A.G. Usman, N.T.T. Linh, V. Gupta,
A. Malik, R. Costache, N.D. Vo, D.Q. Tri, Potential of hybrid
data-intelligence algorithms for multi-station modeling of
rainfall, Water Resour. Manage., 33 (2019) 5067–5087.
- M.A. Ghorbani, R.C. Deo, Z.M. Yaseen, M.H. Kashani,
B. Mohammadi, Pan evaporation prediction using a hybrid
multilayer perceptron-firefly algorithm (MLP-FFA) model:
case study in North Iran, Theor. Appl. Climatol., 133 (2018)
1119–1131.
- S.L. Zhu, S. Heddam, E.K. Nyarko, M. Hadzima-Nyarko,
S. Piccolroaz, S.Q. Wu, Modeling daily water temperature for
rivers: comparison between adaptive neuro-fuzzy inference
systems and artificial neural networks models, Environ. Sci.
Pollut. Res., 26 (2019) 402–420.
- A.G. Usman, S. Işik, S.I. Abba, A novel multi-model data-driven
ensemble technique for the prediction of retention factor in
HPLC method development, Chromatographia, 83 (2020)
933–945.
- S.I. Abba, A.G. Usman, S. Işik, Simulation for response surface
in the HPLC optimization method development using artificial
intelligence models: a data-driven approach, Chemom.
Intell. Lab. Syst., 201 (2020) 104007, https://doi.org/10.1016/j.
chemolab.2020.104007.
- H.U. Abdullahi, A.G. Usman, S.I. Abba, Modeling the
absorbance of a bioactive compound in HPLC method using
artificial neural network and multilinear regression methods,
Dutse J. Pure Appl. Sci., 6 (2020) 362–371.
- S.I. Abba, S.J. Hadi, S.S. Sammen, S.Q. Salih, R.A. Abdulkadir,
Q.B. Pham, Z.M. Yaseen, Evolutionary computational
intelligence algorithm coupled with self-tuning predictive
model for water quality index determination, J. Hydrol.,
587 (2020) 124974, doi: 10.1016/j.jhydrol.2020.124974.
- T.T. Yu, S. Yang, Y. Bai, X. Gao, C. Li, Inlet water quality
forecasting of wastewater treatment based on kernel principal
component analysis and an extreme learning machine,
Water (Switzerland), 10 (2018) 873, doi: 10.3390/w10070873.
- M. Noori, R. Abdoli, M.A. Ghasrodashti, A.A. Ghasrodashti,
J. Ghazizade, Prediction of municipal solid waste generation
with combination of support vector machine and principal
component analysis: a case study of Mashhad, Environ. Prog.
Sustainable Energy, 28 (2009) 249–258.
- S.M. Holland, Principal components analysis (PCA), Dep. Geol.
Univ. Georg. Athens, GA, 2008, pp. 30602–32501.
- J. Yang, G.W. Xu, H.W. Kong, Y.F. Zheng, T. Pang, Q. Yang,
Artificial neural network classification based on highperformance
liquid chromatography of urinary and serum
nucleosides for the clinical diagnosis of cancer, J. Chromatogr.
B, 780 (2002) 27–33.
- W.-Z. Lu, W.-J. Wang, X.-K. Wang, S.-H. Yan, J.C. Lam, Potential
assessment of a neural network model with PCA/RBF approach
for forecasting pollutant trends in Mong Kok urban air,
Hong Kong, Environ. Res., 96 (2004) 79–87.
- M.S. Gaya, M.U. Zango, L.A. Yusuf, M. Mustapha, B. Muhammad,
A. Sani, A. Tijjani, N.A. Wahab, M.T. Khairi, Estimation of
turbidity in water treatment plant using Hammerstein-Wiener
and neural network technique, Indonesian J. Electr. Eng.
Comput. Sci., 5 (2017) 666–672.
- M.S. Gaya, S.I. Abba, A.M. Abdu, A.I. Tukur, M.A. Saleh,
P. Esmaili, N.A. Wahab, Estimation of water quality index
using artificial intelligence approaches and multi-linear
regression, IAES Int. J. Artif. Intell., (2020) 8938, doi: 10.11591/
ijai.v9.i1.pp126-134.
- S.W. Kim, V.P. Singh, Modeling daily soil temperature using
data-driven models and spatial distribution, Theor. Appl.
Climatol., 118 (2014) 465–479.
- B. Mohammadi, N.T.T. Linh, Q.B. Pham, A.N. Ahmed,
J. Vojteková, Y. Guan, A. El-Shafie, Adaptive neuro-fuzzy
inference system coupled with shuffled frog leaping algorithm
for predicting river streamflow time series, Hydrol. Sci. J.,
(2020) (In Press).
- D.R. Legates, G.J. McCabe Jr., Evaluating the use of “goodness
of fit” measures in hydrologic and hydroclimatic model
validation, Water Resour. Res., 35 (1999) 233–241.
- M. Alas, S.I.A. Ali, Y. Abdulhadi, S.I. Abba, Experimental
evaluation and modeling of polymer nanocomposite modified
asphalt binder using ANN and ANFIS, J. Mater. Civ. Eng.,
32 (2020) 04020305.
- R.A. Abdulkadir, S.I.A. Ali, S.I. Abba, P. Esmaili, Forecasting of
daily rainfall at Ercan Airport Northern Cyprus: a comparison
of linear and non-linear models, Desal. Water Treat., 177 (2020)
297–305.
- S.I. Abba, N.T. Linh, J. Abdullahi, S.I. Ali, Q.B. Pham,
R.A. Abdulkadir, R. Costache, D.T. Anh, Hybrid machine
learning ensemble techniques for modeling dissolved oxygen
concentration, IEEE Access, 8 (2020) 157218–157237.
- Q.B. Pham, M.S. Gaya, S.I. Abba, R.A. Abdulkadir, P. Esmaili,
N.T. Linh, C. Sharma, A. Malik, D.N. Khoi, Modeling of Bunus
regional sewage treatment plant using machine learning
approaches, Desal. Water Treat., 203 (2020) 80–90.